
mPower™ DC 3xx Series
Programmable Power Supplies

ModBus & SCPI
For USB, GPIB, Ethernet, and AnyBus Modules

Programming Guide and Reference

Feb 2020 : P/N 501048-DC3PS-A

© 2020, Marway Power Systems, Inc. All rights reserved. Some portions © Elektro-Automatik, used with permission.

mPower™, mPower DC™, mPower 3 Series™, mPower 300™, mPower 310™, and mPower 320™ are trademarks of
Marway Power Systems, Inc. All other trademarks are the property of their respective owners.

Global Support Contacts

Web: www.marway.com
Email: support@marway.com
 sales@marway.com
Phone: 800-462-7929 (7am–5pm PST)

There may be updates to this documentation and the software it describes at:
http://www.marway.com/mpower-dc-power-supplies

mailto:support%40marway.com?subject=
mailto:sales%40marway.com?subject=

Page 3mPower DC Programming Guide (Rev A)

1 General
1.1 Documentation Symbols .. 5
1.2 Applicability ... 5

2 Hardware Interfaces
2.1 USB Ports .. 6

2.1.1 Rear USB .. 6
2.1.2 Front USB ... 6

2.2 Ethernet .. 6
2.2.1 Access via HTTP... 6
2.2.2 Access via TCP ... 7

2.3 GPIB ... 7
2.4 AnyBus Modules ... 7
2.5 AnyBus Startup Time ..10
2.6 AnyBus Installation ...10
2.7 AnyBus Connection Topology ...10

3 Programming Introduction
3.1 Remote Communication Sources ..11
3.2 Remote Communication Protocols11

3.2.1 Protocol Detection ...11

3.3 Remote Communication Interfaces12
3.4 Control Location ...12
3.5 Command Message Timing ...13

3.5.1 Reading response time ...13
3.5.2 Writing response time ...13
3.5.3 Time between messages ..14

3.6 Connection Timeout ...14
3.7 Fragmented Messages ...14
3.8 Resolution and Tolerances ..14
3.9 Function Generator Slope ..15

3.9.1 Externally Programmed Slope16

4 ModBus
4.1 ModBus Overview ... 17

4.1.1 ModBus RTU .. 17
4.1.2 ModBus TCP .. 17
4.1.3 ModBus for other Interfaces ..18

4.2 Set Value Resolution ..18
4.2.1 Hex Percent and Decimal Value Conversion18

4.3 Communication with AnyBus Modules................................18

4.4 Communication with USB Port ..19
4.4.1 USB driver installation ..19
4.4.2 Discovering COM Port in Windows19
4.4.3 Getting Started ..19

4.5 Reading Register Lists ...20
4.5.1 Function Columns ...20
4.5.2 Data type Column ...20
4.5.3 Access Column ..20
4.5.4 Number of registers Column ..20
4.5.5 Data Column ..21
4.5.6  Profibus/Profinet slot & index Columns21
4.5.7  EtherCAT SDO/PDO? Column21

4.6 ModBus RTU in Detail ..21
4.6.1 Message types...21
4.6.2 Slave Address ..21
4.6.3 Functions ...22
4.6.4 Control messages (write) ..22
4.6.5 Query message ...23
4.6.6 Response messages ...24
4.6.7 The ModBus checksum ..25
4.6.8 Communication errors ..25
4.6.9 Examples of ModBus RTU messages26

4.7 ModBus TCP in detail ...29
4.7.1 Example for a ModBus TCP message29

4.8  Specific Register Notes ..30
4.8.1 Register 171 ..30
4.8.2 Register 411 ..30
4.8.3 Registers 500-503 (set values)30
4.8.4 Register 505 (system status)30
4.8.5  Registers 650 - 662 (master-slave configuration)31
4.8.6 Registers 850 - 6695 (function generator)31
4.8.7 Registers 9000 - 9009 (adjustment limits) 31
4.8.8 Registers 10007 - 10900 ...31
4.8.9 Register from 12000 (advanced photovoltaics

simulation, DIN EN 50530) ..32

4.9 Remote Programming of Function Generator34

5 SCPI protocol
5.1 Syntax .. 37

5.1.1 Concatenated commands ...38
5.1.2 Upper and lower case ...38
5.1.3 Long form and short form ...38
5.1.4 Termination character ...38
5.1.5 Errors ..38

5.2 Value Format ...39
5.3 Getting Started ...40

5.3.1 Ping ..40
5.3.2 Switch between remote and manual control40

Page 4mPower DC Programming Guide (Rev A)

5.4 Standard IEEE commands ... 41
5.5 Status registers ..42
5.6 Status commands ..44
5.7 Set value commands ... 47
5.8 Measure commands ..49
5.9 Protective feature commands ...50
5.10 Supervision feature commands .. 51
5.11 Adjustment limit commands ..52
5.12 Master-slave operation commands53
5.13 General query commands ...54
5.14  System configuration commands55
5.14.1  General configuration commands55
5.14.2  Anybus configuration commands57
5.14.3  Ethernet configuration commands59

5.15 Function generator commands ...61
5.15.1 XY type: Mode selection ..62
5.15.2 XY type: Load table data ...62
5.15.3 XY type: Control ...62
5.15.4  Arbitrary type: Mode and configuration63
5.15.5 Arbitrary type: Load sequence data63
5.15.6 Arbitrary type: Control ...65
5.15.7 Special function: Simple PV (photovoltaics)66
5.15.8 Special function: FC (fuel cell)67

5.16 Extended PV simulation commands68
5.16.1  General configuration ...68
5.16.2  Day trend mode configuration68
5.16.3 Data recording ...69
5.16.4 Status commands ...70
5.16.5 Parameter commands .. 71
5.16.6 Control commands ..72
5.16.7 Error situations ..73

5.17 Alarm management commands .. 74
5.17.1 Reading system alarms ... 74
5.17.2 Acknowledging system alarms 74
5.17.3 Alarm counters ... 74
5.17.4 Example .. 74

5.18 Example applications ...75
5.18.1  Configure and control master-slave with SCPI75
5.18.2 Programming examples for PV simulation (DIN EN

50530) ... 76

6  Profibus & Profinet
6.1 General ..82
6.2 Preparation ...82
6.3  Slot configuration for Profibus ...82
6.4  Slot configuration for Profinet ..83
6.5  Cyclic communication via Profibus/Profinet84

6.6  Acyclic communication via Profibus/Profinet84
6.7 Examples for acyclic access ..85
6.7.1  Activate/deactivate remote control85
6.7.2 Send a set value ..85
6.7.3 Read something...86

6.8 Data interpretation ...87

7 CANopen
7.1 Preparation ..88
7.2 User objects (indexes) ..88

7.2.1 Translation ADI > Register ...88

7.3  Specific examples ...89
7.4 CANopen to ModBus differences ...89

7.4.1 When using the arbitrary generator89

7.5 Error codes ..90

8 CAN
8.1 Preparation ...91
8.2 Introduction ...91
8.3 Message formats ..92

8.3.1 Normal sending (writing)...92
8.3.2 Cyclic sending (writing) ...92
8.3.3 Querying ...94
8.3.4 Normal reading ...94
8.3.5 Cyclic reading ..95
8.3.6 Message examples ... 97

9 EtherCAT
9.1 Preamble ...99
9.2 Integrating your system in TwinCAT99
9.3 Data objects ..99

9.3.1 PDO object ...100
9.3.2 SDOs ..100
9.3.3 Use of the data objects ...100

Appendix A: System Classes
A.1 Class Assignments ..101

Appendix B: 320 Series Front USB
B.1 ModBus Commands ...102
B.2 SCPI Commands ...102

Page 5mPower DC Programming Guide (Rev A)

1 General

1.1 Documentation Symbols
Warning and safety notices as well as general notices in this document are shown in a box with a symbol as follows:

Symbol for general safety notices (instructions and damage protection bans) or important
information for operation.

Symbol for general notices.

1.2 Applicability
This Programming Guide covers a multitude of hardware interfaces and software protocols available across the mPower
DC Series of programmable autoranging DC power supplies. Not all features described in this Guide are available on all
models of the mPower DC series.

•	The mPower 300 Series models typically have USB and Ethernet remote interfaces. This Series does not have a function
generator, so remote programmability for the function generator does not apply.

•	The mPower 310 Series models come with either a GPIB interface, or the flexible AnyBus slot, which accepts a number 
of different hardware protocol modules.

•	The mPower 320 Series models come with USB Type B on the rear and front panels. The port on the front panel sup-
ports a subset of the ModBus and SCPI commands relative to the rear port.

The reader will have to be aware of exactly which model and hardware interfaces are to be programmed, and therefore
which software capabilities are also available. Throughout the Guide, an attempt will be made to try to make it clear which
models the discussed features are applicable to. If there is no specific mention of model compatibility, it can be assumed 
the commands are applicable to all models.

Page 6mPower DC Programming Guide (Rev A)

2 Hardware Interfaces

2.1 USB Ports

2.1.1 Rear USB

All mPower DC systems include a Type B USB port on the rear panel. This port is intended for full programmatic control of
the system. Either of the ModBus RTU or SCPI protocols can be used. If you plan to use this port for remote control of the
power supply, you can skip the discussions below for GPIB and AnyBus.

2.1.2 Front USB

Some systems have a front USB port which might be either a Type A or a Type B connector. The Type A
connector is used on the 310 Series models, whereas the Type B is used on 320 Series slave models.
The Type A connector is not used for remote control purposes. Rather, it is for file access to a USB thumb drive—the details 
of which are in the Operating Guide.

For 320 Series models, the front Type B USB can be used for programmable access, but the functionality is limited
compared to the rear port. Both ModBus RTU and SCPI can be used. Appendix B addresses the available commands.

(See also the description of the USB ports in the Operating Guide for the applicable series.)

2.2 Ethernet
Ethernet is not available on all models. It is not available on 320 Series models. It is optionally available on 310 Series
models. It is a standard port on all 300 Series rackmount models.

When available, Ethernet can be utilized in one of two access modes: HTTP to access a basic web browser interface, or
plain TCP for ModBus and SCPI commands.

2.2.1 Access via HTTP

The Ethernet based modules, like for standard LAN, ModBus TCP, or Profinet, and the integrated port as featured on the 
300 Series, offer a web user interface. The web UI is accessible through common web browsers by simply entering the IP
address of the power supply (or the host name if your IT infrastructure has assigned it a DNS name).

In addition to presenting some configuration tools, the website gives the user full control over the system through 
manually typing SCPI commands. This interface primarily serves to help with command testing purposes. It’s not intended
to be a general purpose dashboard or control panel.

The default IP is 198.168.0.2. All network parameters for the system/network interface can be changed or reset to 
defaults in the setup menu of the system (locally or by remote software). As is standard for HTTP, the web interface uses
port 80.

The currently active IP address, along with other network related parameters such as gateway, subnet mask, DNS
address, and MAC address can also be read from an overview in the setup menu of systems where there is an on-screen
setup menu (i.e. not slave units).

The CONFIGURATION page of the web interface allows for setting up network-specific parameters. This requires prior 
activation of remote control by command SYST:LOCK ON.

Type
B

Type
A

Page 7mPower DC Programming Guide (Rev A)

2.2.2 Access via TCP

All Anybus Ethernet modules, as well as the integrated port of 300 Series offer standard TCP access via the default port
5025 (which is user adjustable). TCP data transfer can be used for communication using SCPI or ModBus RTU (a.k.a.
ModBus RTU over Ethernet). For the ModBus TCP protocol (which is not the same as ModBus over Ethernet), port 502 is
used (and is not user adjustable).

The port and other network related parameters can be adjusted in the system’s setup menu, from outside via USB, or
through the web interface (see 2.5 above).

A TCP/IP socket connection (IP:port) is intended for normal remote control access to the system when using an Ethernet 
interface.

The TCP connection can be automatically disconnected by the system after a certain amount of time
elapses with no data transmission. This is due to an adjustable timeout (default: 5 s). There is also
another related option named TCP keep-alive which, if activated, makes the timeout ineffective,
unless TCP keep-alive is not configured in the network.

2.3 GPIB
A GPIB interface is available as a factory installed option on some models. With this port, only SCPI can be used. ModBus
RTU would still be available on the USB port.

2.4 AnyBus Modules
Some systems support what’s called the AnyBus expansion slot. This expansion slot accepts a number of field-replaceable 
AnyBus Modules. These modules are described below.

Type / Name Connectors LED indication Front view

CAN 2.0B / 
IF-AB-CAN

1x Sub-D 9pole,
male

RUN Indicates data traffic (green, flickering)

ERR Will be lit (green) while a communication error
is present.

CANopen / 
IF-AB-CANO

1x Sub-D 9pole,
male

RUN Indicates status with flash sequences 
according to DR303-3 (CiA)

ERR Indicates status with flash sequences 
according to DR303-3 (CiA)

RS 232 / 
IF-AB-RS232

1x Sub-D 9pole,
male, for null
modem cable

PWR Module is powered

Page 8mPower DC Programming Guide (Rev A)

Type / Name Connectors LED indication Front view

Profibus / 
IF-AB-PBUS

DP-V1 Slave,
1x Sub-D 9pole,
female

OP Operation mode:
on (green) = Connection established
flashing (green) = Ready
flashing (red, 1x) = Parameter error
flashing (red, 2x) = Profibus error

ST Status
off = Not Initialized
on (green) = Initialized
flashing (green) = Extended diagnosis
on (red) = Exception error

Ethernet / 
IF-AB-ETH1P

1x RJ45 NS Network status:
flashing (green) = default, can be ignored
on (red) = Double IP, fatal error
flashing (red) = Connection time-out

MS Module status:
flashing (green) = default, can be ignored
on (red) = Exception error
flashing (red) = Recoverable error

Ethernet / 
IF-AB-ETH2P

2x RJ45

LINK Connection status:
on (green) = Connection established
flashing (green) = Data traffic

ProfiNET IO / 
IF-AB-PNET1P

1x RJ45 NS Network status:
on (green) = Online with controller in RUN
flashing (green) = Controller in STOP

MS Module status:
on (green) = Everything OK
on (red) = Exception error
flashing (red, 1x) = Config error
flashing (red, 2x) = IP address not set
flashing (red, 3x) = Station name not set
flashing (red, 4x) = Internal error

ProfiNET IO / 
IF-AB-PNET2P

2x RJ45

LINK Connection status:
on (green) = Connection established
flashing (green) = Data traffic

EtherCAT Slave / 
IF-AB-ECT

2x RJ45 RUN Indicates status with flash sequences 
according to DR303-3 (CiA)

ERR Indicates status with flash sequences 
according to DR303-3 (CiA)

Page 9mPower DC Programming Guide (Rev A)

Type / Name Connectors LED indication Front view

ModBus TCP / 
IF-AB-MBUS1P

1x RJ45 NS Network status:
on (green) = Module active
flashing (green) = Module waiting for connection
on (red) = Double IP or fatal error
flashing (red) = Process time-out

MS Module status:
on (green) = Everything OK
on (red) = Primary error
flashing (red) = Secondary error

ModBus TCP / 
IF-AB-MBUS2P

2x RJ45

LINK Connection status:
on (green) = Connection established
flashing (green) = Data traffic

The CANopen module IF-AB-CANO does not feature an internal termination resistor. Thus the re-
quired bus termination resistor has to be applied by the user according to the CAN bus requirements.

Page 10mPower DC Programming Guide (Rev A)

2.5 AnyBus Startup Time
When integrating a unit with an AnyBus interface into an existing network or field bus, please note:

•	All modules, but especially the Ethernet types which provide a website, require some startup time each time the system
is powered, which may delay their network readiness. Often, an interface module is ready for communication within
the time the rest of the system needs to startup, but not always. The wait time before a system is ready will have to be
determined empirically based on your product and module combination.

•	A readiness for operation may be indicated by a module, which has an LED for that purpose, before the needed startup
time has run out. If that happens, trying to contact an Ethernet module in order to access the website may result in a
time-out error reported by the browser. Just wait a little longer, and try again.

For any automated scripting, a startup ready interval should be determined through testing. This time interval should be
allowed to pass before sending commands to the unit.

2.6 AnyBus Installation
The mechanical installation of the AnyBus modules is described in the mPower DC Operating Guide. This Programming
Guide provides details about the specific commands which mPower DC products make use of.

Broader background information about the protocols and inter-connectivity of field buses and networks supported by the 
modules (ModBus, CAN, ProfiNet, etc.) can be found in publicly available documentation and similar sources. Begin by 
trying to locate the web sites of the organizations which manage the standards.

2.7 AnyBus Connection Topology
The Ethernet based modules for standard LAN, ModBus TCP and Profinet/IO are also available in a version with two ports. 
These provide the possibility to connect multiple systems in a linear topology and even to build a system level ring for
extended safety against interruption. External switches can be eliminated, and the many long network cables, like when
having a star-shaped topology, can be reduced to a minimum. These differences may or may not be advantages to your
setup, but might be worth considering when planning for module installation.

The EtherCAT module, however, has two ports by default and always builds a ring because of the standard setup within
EtherCAT systems. It’s also Ethernet based, but cannot be considered a LAN port.

Page 11mPower DC Programming Guide (Rev A)

3 Programming Introduction

3.1 Remote Communication Sources
After connecting a power supply digital interface to a computer, remote software access can be gained in several ways.

•	The control and monitoring software EA Power Control, available through Marway.
•	LabView VIs, available through Marway.
•	A custom programmed application created by the user or contractor.
•	General purpose third-party software, like a terminal program that can send text messages (SCPI).
•	Standardised third-party software for CAN, CANopen, Profibus, or EtherCAT etc.

3.2 Remote Communication Protocols
All mPower DC 3 Series power supplies support two command protocols: ModBus and SCPI.

Some form of the ModBus command protocol can be used on every communication interface available on the mPower
DC 3 Series systems except for GPIB. (GPIB uses only SCPI.) SCPI can be used on most, but not all interfaces. The exact
compatibility between protocols and interfaces is listed in “3.3 Remote Communication Interfaces” on page 12.

With ModBus, mPower DC uses the two standardized variations ModBus RTU and ModBus TCP, and then a subset form of
the traditional ModBus RTU in conjunction with some of the other message protcols (CAN, Profibus, etc.). Each variation 
shares the same core register commands, but differs in its message format.

The mPower DC control system does not require that the remote protocol be declared. There is no “mode” for ModBus vs.
SCPI as the remote protocol. Rather, on interfaces which are compatible with both ModBus and SCPI, commands from
either protocol could technically be arbitrarily intermixed.

3.2.1 Protocol Detection

On many interfaces, the mPower control system uses the first byte of the remote command message to automatically 
distinguish the message as being either ModBus RTU or SCPI. A ModBus RTU message begins with the slave address
(which is a single byte). In all mPower DC 3 Series, this slave address is 0x00. The ModBus RTU protocol uses the address
of 0x00 as a broadcast address. However, for mPower DC products, they will not be on a true “bus” (i.e. RS-485). Since
communication will be over USB, some form of Ethernet, or RS232, the communication is always “point-to-point” from the
remote control source to the power supply.

For the built-in USB and Ethernet (not on port 502), the internal system counts on the the first byte as 0x00 to indicate 
the message will be a ModBus RTU. A value between 0x01 and 0x29 in the first byte will cause a ModBus communication 
error, whereas starting with 0x2A (ASCII character *), the message will be considered a text message, and interpreted as
a SCPI command. For AnyBus interfaces designed for specific protocols, they do not depend on this first byte distinction.

The ModBus RTU slave address is always 0. This address cannot be changed.

As a result of mPower’s auto-protocol-detection scheme, SCPI cannot be used on Ethernet TCP port 502. Since ModBus
TCP requires a wrapper in which the first byte cannot be 0x00, the system cannot distinguish ModBus TCP from SCPI. 
Therefore, in the mPower system, port 502 (which is an IANA reserved port for ModBus TCP), is assumed to always be
receiving ModBus TCP traffic. This applies also to the IF-AB-MBUS1P and IF-AB-MBUS2P Anybus mdules—even though 
these are Ethernet ports, SCPI cannot be used.

Page 12mPower DC Programming Guide (Rev A)

3.3 Remote Communication Interfaces
As identified in the section above, while the system generall allows either ModBus of SCPI, not all interfaces support both 
protocols.

The table below identifies which interfaces support which protocols.

Interface ModBus RTU ModBus TCP SCPI Notes

USB (Type B) Yes x Yes
Built-in Ethernet Yes Yes Yes
Built-in GPIB x x Yes
IF-AB-CAN : CAN PDU1 x x See “8. CAN”
IF-AB-CANO : CANopen PDU1 x x See “7. CANopen”
IF-AB-RS232 : RS232 Yes x Yes
IF-AB-PBUS : Profibus PDU1 x x See “6. Profibus & Profinet”
IF-AB-PNET1P : ProfiNet PDU1 x x See “6. Profibus & Profinet”
IF-AB-PNET2P : ProfiNet PDU1 x x See “6. Profibus & Profinet”
IF-AB-ETH1P : Ethernet Yes Yes Yes
IF-AB-ETH2P : Ethernet Yes Yes Yes
IF-AB-MBUS1P : ModBus TCP x Yes x
IF-AB-MBUS2P : ModBus TCP x Yes x
IF-AB-ECT : EtherCAT PDU1 x x See “9. EtherCAT”
1 — ModBus PDUs/registers are used as the core command payload, but the communication wrappers are different.

When using ModBus on a standard Ethernet interface, use the ModBus RTU format on any available
TCP port other than 502. To use ModBus TCP, port 502 must be used.

3.4 Control Location
Since the power supply can be controlled from the onboard controls, and from a variety of remote control interfaces,
we have the concept of control location—that is, the location, or source, of where control is being managed. The power 
supply software concerns itself with this concept by managing whether control is allowed from the local controls only, from
remote controls only, or from either location.

Models with a digital display will show the control location.

Location as displayed on the system Description

If there is no specific control location indicated, the system is available for 
remote access, and all interfaces for remote control are enabled.

Remote Analog, Remote USB, etc. Remote control is active.
Local Remote control is blocked, the system can only be controlled manually

from the unit’s built-in controls.

All mPower DC 3 series offer a configuration setting Allow remote control to block remote control of the system.

Page 13mPower DC Programming Guide (Rev A)

Changing this setting to indicate Local results in remote control being blocked. Activating this block would be useful for
safety purposes — a user can temporarily disable remote control in order to safely access the system to change some 
wiring, or just change a setting, without unexpected interference from a remote command.

Activating the Local condition results in the following:

•	 If remote control via one of the digital interfaces was currently active, remote control will be deactivated, and can be
activated again later, once the Local condition has been deactivated again.

•	 If remote control via analog interface is currently active, and we assume the pin REMOTE has a steady signal, then
remote control is interrupted only as long as condition Local is active. It returns automatically as soon as Local is deac-
tivated. The REMOTE pin signal would have to be deactivated, or the plug on the analog interface be removed to keep
remote inactive after the Local setting was deactivated.

3.5 Command Message Timing
Program code from a PC or PLC can send commands to a power supply faster than each command can be processed. It is
the responsibility of the program code to make sure that the power supply is ready for each command. This often involves
creating arbitrary delays in the program code between commands. How long those delays need to be sometimes takes
experimentation. However, there are some guidelines to help establish a starting point.

3.5.1 Reading response time

There are generally two methods of communicating with a port:

1) Open port > write query to port > read response from port > close port

2) Open port > write query to port > read response from port > repeat (write-read) X times > close port

Each method has advantages and disadvantages. The primary advantage of method 2 over method 1 is that writing and
reading X times within one session is expected to be faster (shorter) compared to a full session per cycle. The primary
advantage of method 1 over method 2 is that closing the port also closes the connection which makes communication
more stable—especially if the time between two write-read cycles is very long. 

The values in the table below have been acquired using method 1.

Typical response times

Series Protocol USB Ethernet CAN/CANopen

mPower 310 Series SCPI <15 ms <10 ms —
ModBus <10 ms <10 ms ≈ 2 ms

mPower 300 Series SCPI 1–3 ms 5–8 ms —
ModBus ≈ 1 ms ≈ 5 ms —

3.5.2 Writing response time

Unlike reading, there’s not a predictable response time for write commands. Each command performs unique tasks in
the power supply, and some take longer to accomplish than others. Timing is further complicated by the interface used as
each operates at various speeds, with varying overhead.

When developing code to automate process sequences, it will be necessary to experiment with the product, computer,
and communication bus together to acquire repeatable timing data.

Page 14mPower DC Programming Guide (Rev A)

3.5.3 Time between messages

The minimum time between two messages shown below, primarily depends on the typical read time as discussed above.

Series Minimum delay between messages Recommended delay between messages

mPower 310 Series USB / CAN / CANopen: 10 ms
Ethernet: 15 ms

USB / CAN / CANopen: 15-20 ms
Ethernet: 20 ms

mPower 300 Series USB: 2 ms
Ethernet: 8 ms

USB: 5 ms
Ethernet: 15 ms

3.6 Connection Timeout
Socket connection to systems which support an Ethernet port have a connection timeout. This variable and user-
adjustable timeout (see Operating Guide for the system) closes the socket connection automatically on the system side if
there was no communication going on between system and controlling unit (PC, PLC etc.) for the adjusted time. After the
socket has been closed, connection can be established again anytime. The timeout becomes automatically ineffective if
TCP keep-alive is activated, and supported in the network.

3.7 Fragmented Messages
With all communication interfaces, it is possible for the host computer (PC/PLC) to send partial messages, or messages 
with timing gaps between bytes. When this happens, on the power supply side, a partial command is received, there’s a
delay, and the rest of the command is received. Since there is no requirement for a termination byte in ModBus or SCPI,
the power supply could interpret these two data burts as two commands rather than one. Of course, neither would be
recognizable, and the system will respond with errors.

How long of a delay between bytes is a problem? To help create some predictability in these scenarios, a variable timeout 
named Com Timeout is available. This timeout defines the maximum time delay tolerated between data burts. As long as 
gaps between bytes is less than this timeout, the power supply will continue to accept data as a single message.

If the communication between the host and power supply experiences communication errors, and fragmented messages
are suspected, the timeout can be used. Increase the value a little at a time until reliable communications are restored.
It’s advised to keep the timeout setting as low as possible, because at the end of every message, the timeout has to
elapse before the system can process the command.

When using SCPI, sending an additional termination character (typical LF, CR, or CRLF accepted), which is not required but
accepted, will terminate the timeout immediately and let the system consider the message as completely received, so it
can process.

3.8 Resolution and Tolerances
When setting output and limit values for voltage, current, power, and resistance, resolution and tolerance have to be
allowed for. Resolution affects the realistic incremental steps which values can be set to. Tolerance informs the amount of
inaccuracy which can be expected.

In all mPower 3 rackmount systems, there is an internal resolution of 26,214. This means that a value such as the DC
output volts has 26,214 possible values (or steps) between 0 volts and the maximum nominal rating of volts for the
system. A system which has a nominal rating of 80 volts has 26,214 possible steps between 0 and 80. A system which
has a nominal rating of 750 volts also has 26,214 possible steps between 0 to 750. For the 80 V system, every “step”
in value is an increment of 80 V ÷ 26214 steps, or 0.00305 mV/step. For the 750 V system, each step is 750 ÷ 26214 
steps, or 0.02861 mV/step.

Page 15mPower DC Programming Guide (Rev A)

Let’s say it was desired to set the output of each system to 10.00 Vdc. For the 80 V unit, 10.00 V ÷ 0.00305 mV/step 
results in 3,278.68 steps. A fraction of a step is not possible. So, the system is capable of either 3,278 or 3,279 steps.
Multiplied back out, we end up with either 9.9979 Vdc or 10.00095 Vdc. For the 750 V unit, using the same math,
the two possible results are 9.98489 Vdc or 10.0135 Vdc. Obviously these are very small differences, but differences
nonetheless that you might see between setting and reading values.

Further, no control system is perfectly accurate, or perfectly repeatable. Every system has some plus or minus fluctuation 
of the actual result. The spec sheet for a given unit may indicate that the voltage tolerance is 0.1% (or nominal rating).
This means that for an 80 Vdc system, setting any given output target can result in a value 0.1% x 80 V, or 80 mV.
Therefore, setting a target of 24.00 Vdc means the actual measured value could be between 23.92 V and 24.08 V.

Both resolution and tolerance influence the final values, and explain why you will see small differences in set value targets 
and the actual measurements when reading values.

3.9 Function Generator Slope
Applicable to 310/320 Series.

With the arbitrary function generator, all sequence points have an AC part, which is used to generate sine waves, and a
DC part with start and end values. When the DC start and end values are different, a slope is generated. That slope can
be applied to voltage or to current.

The slope (ΔU/t or ΔI/t) must meet a specific minimum value.

Minimum slope = 0.000725 x Nominal Rated Voltage (or current) ÷ seconds

Before programming a sequence of points, the slope of those points should be calculated to make sure they meet the
minumum slope. For the specific mPower unit to be used, perform the above calculation for minimum slope. Then, verify 
that the desired sequence of points is compatible.

Let’s look at an example.

Using an mPower 310-23-050-030-001 unit (500 V and 30 A rating), a rising ramp on the current is desired. The
minimum slope calculates as: ΔI/t = 0.000725 * 30 A = 21.75 mA/s. 

If we wanted to ramp 0–20 A in 60 seconds, we would take 20 amps ÷ 60 seconds which is 0.333 A/s or 333 mA/s. This 
is well above the mimum slope.

If we wanted to ramp 0–20 A in 20 minutes, we would take 20 amps ÷ (20 * 60) seconds which is 0.016 A/s or 16 mA/s. 
This is less than our target of 21.75 mA/s for the mimum slope. This ramp would not be possible using the function 
generator.

Another way to calculate this, is to determine the maximum time for a certain ΔU or ΔI.

Maximum ramp time = Change in Voltage (or current) ÷ Minimum Slope

For our 20 amp slope above, we calculate 20 A ÷ 0.02175 A/s which is 919.5 seconds. If we wanted a 1000 second 
slope duration, we would know that’s too long.

What this tells us is that long ramp times over many minutes or hours are not possible using the function generator.
However there is another way—which is programming a number of steps over time using external software.

Page 16mPower DC Programming Guide (Rev A)

3.9.1 Externally Programmed Slope

In the section above, we established how to determine the limits of using the function generator to create a slope in
voltage or current values over time. We also established that the function generator is not suitable for slopes lasting lonf
periods of time (many minutes to hours). However, we can create long slopes using standard external programming of
output values.

Here the effective resolution comes into play (see “3.8 Resolution and Tolerances” on page 14). The unit from the
example above has an effective resolution of 26214 steps which represents 0-100% = 0-30 A when working with current.
For 0-20 A, it would then be 17476 steps. If we wanted to generate the 0-20 A ramp over 10 hours, we could set a new
value every 10 h ÷ 17476 = ~2 seconds, with the value increase every step of 20 A ÷ 17476 = ~1.15 mA. This is a very
small step which will be influenced by system tolerances. Therefore, it may be more reasonable to use a longer period, 
and a larger step. For example, an increment of 11.5 mA every 20 s, or 34 mA every minute.

Whatever the numbers used, this approach is how to create long slope periods which are beyond the limits of the internal
function generator.

Page 17mPower DC Programming Guide (Rev A)

4 ModBus

4.1 ModBus Overview
One advantage in using the ModBus command protocol is that some form of the commands can be used on every other
communication interface available on the mPower DC 3 Series systems, except for the GPIB interface. (GPIB uses only
SCPI.) So, having learned ModBus, and its registers in particular, that knowledge is useful for almost all other interfaces.

Keep in mind that for the mPower products, when we talk about ModBus, there are two types: ModBus RTU and ModBus
TCP. ModBus RTU is the traditional standard. ModBus TCP is a modified form.

This section of the Guide starts off with a number of topics which apply to all uses of ModBus before taking a detailed
look at the traditional ModBus RTU protocol, the ModBus TCP protocol, and some register-specific notes.

A detailed listing of all registers is included in a separate PDF document mPower-XXX--Series-Modbus-Register-List
available on our website.

4.1.1 ModBus RTU

The traditional ModBus RTU message consists of hexadecimal bytes in three segments called the Address, the Protocol
Data Unit (PDU), and the CRC Checksum. The PDU is made up of sub-elements starting with the function code (FC), and
then varies depending on the message purpose.

For Modbus RTU, all of these traditional elements are used. For example, here’s the ModBus RTU message format to write
a single register. Details of the message format are covered in “4.6 ModBus RTU in Detail” on page 21.

Review the table in “3.3 Remote Communication Interfaces” on page 12 to dientify which interfaces that ModBus RTU
can be used with.

PDU (protocol data unit)

Address Func. Code Start register Data word CRC

0x00 0x06 0..65535 Value to write Checksum ModBus-CRC16

For  mPower DC products, the slave address (first byte) must always be 0x00. The mPower control system uses the first 
byte to auto-distinguish the message as being either ModBus or SCPI. A value between 0x01 and 0x29 in the first byte will 
cause a ModBus communication error, whereas starting with 0x2A (ASCII character *), the message will be considered a
text message, and therefore a SCPI command. (See “3.2.1 Protocol Detection” on page 11 for additional details.)

4.1.2 ModBus TCP

For Modbus TCP, the CRC checksum is removed, and additional message header is added. This example shows an
arbitrary transaction identification of 0x4711. The rest of the ModBus TCP message is the same as ModBus RTU, except 
for eliminating the checksum. Information about the header can be found in “4.7 ModBus TCP in detail” on page 29.

Review the table in “3.3 Remote Communication Interfaces” on page 12 to dientify which interfaces that ModBus TCP
can be used with.

MBAP Header Address Func. Code Start register Data word

0x4711 0x0000 0x0006 0x00 0x06 0..65535 Value to write

Page 18mPower DC Programming Guide (Rev A)

4.1.3 ModBus for other Interfaces

While ModBus was developed for use with basic serial interfaces, the command set of the mPower ModBus protocol has
been adapted to other field bus protocols. Elements of the ModBus PDU (described above), particularly the registers, are 
used in various ways with a distinct wrapping protocol. This still requires understanding the ModBus registers, and how
data is defined and structured for ModBus messages.

The separate Registers List document, and section in this document explaining the ModBus protocol will be useful when
using CAN-, Profibus-, and EtherCAT-based connectivity.

4.2 Set Value Resolution
When reading or writing set values, the numeric value is always a percent of the power supply’s nominal rating (e.g. 80 V,
40A, 1000W). The percent is represented in hexadecimal where 0x0000 = 0% and 0xCCCC = 100%.

Note however, that some numeric values can be more than 100% of the nominal rating. For example, the voltage, current,
and power set values can be up to 102% of the nominal rating. Therefore, for these registers, the acceptable maximum
value is more than 0xCCCC (100%), and is actually 0xD0E5 (102%).

Similarly, the threshold alarms can be up to 110% of the ratings. Therefore, 0xE147 is the maximum acceptable value
When reading the actual voltage, current, or power registers can be as high as 125% of the nominal rating (0xFFFF).

All numeric values have ranges, and many have ranges which exceed 100% nominal ratings. The register reference will
detail the exact range and maximum hexadecimal value.

All set values are not only limited by the unit’s nominal values, but are also limited by Limits settings.
Just as they would be when manually entering values, set values sent to registers which exceed the
Limits settings are rejected by the power supply. It is good practice to read back the value after set-
ting Limits to verify that the value was accepted and stored.

4.2.1 Hex Percent and Decimal Value Conversion

Real values have to be translated to percent values before transmitting them to the system. Also, percent values read
from the system are usually translated into real values in order to process them further (in the program code managing
the power supply). As described in the section above, 0xCCCC (hex) = 52,428 (decimal) = 100% nominal value (U, I, P)

Translation is done by using these formulas in your software:

Percent hex value to decimal real value Decimal real value to percent hex value

Real value = Rated value * percent value Percent value = 52428 * real value
52428 Rated value

Example: The nominal voltage of your unit is 80 V and actual voltage was
read as 0x2454 (decimal: 9300). According to the formula above, the real
actual value will be (80 * 9300) / 52428 = 14,19 V.

Example: the power set value shall be 3150 W, the power rating of
your unit is 3500 W. According to the formula above we get a power
set value of (52428 * 3150) / 3500 = 47185 = 0xB851.

4.3 Communication with AnyBus Modules
For all interfaces other than GPIB (which uses SCPI), RS-232 and USB (which use ModBus RTU), the core command
payload is based on the ModBus registers. The field bus or network communication details create a distinct format which 
will be unique to the interface protocol being used (ModBus TCP, CAN, EtherCAT, Profibus, etc.). To use these interfaces 

Page 19mPower DC Programming Guide (Rev A)

with ModBus-style commands, you will need to understand the ModBus PDU (not RTU) data structure, and then the
distinct adaptations of the communication protocol you plan to use—each of which is described in a later section of this 
Guide (Profibus, CAN, EtherCAT, etc.).

4.4 Communication with USB Port
After a successful USB driver installation in the PC/PLC, and connecting to the power supply via USB cable, the system is 
ready for access. In Windows, the USB connection will be accessed as a COM port (which is visible in the System Manager
control panel). There’s no need for configuration. The driver is based upon a standardized CDC driver (Communications 
System Class). The typical serial settings are not effective and are ignored.

4.4.1 USB driver installation

The USB driver for the rear or front side USB port type B is available as a download from our website. It installs a signed
driver for virtual COM ports on 32 bit or 64 bit Windows operating systems since Windows 7.

4.4.2 Discovering COM Port in Windows
Once the driver is installed, and one or more power supplies
connected by USB to a PC, you will need to determine which COM
port is used for which power supply. It is easier to do this if you
attach one power supply at a time, so it is easier to find which COM 
port is the newest.

Attach a power supply, and turn on the AC power (it does not need
any DC output connections). In Windows navigate to Control Panels
> Device Manager, and look for Ports in the list, and expand it. You
will find one or more entries for either PS 9000 Series or PSI 9000 
Series — this is the name of the driver for the mPower DC 300 and 
310/320 Series. Next to those names you will see (COMnn) where
nn will be a single or double-digit number. That is the COM port
number. As you add one unit at a time, it should be apparant which
COM has been added (and therefore which unit it conects to).

4.4.3 Getting Started

To communicate remotely with the power supply using ModBus requires terminal software on the PC side which is able
to open a COM port, and both receive and send binary messages in hexadecimal format. There are several general
purpose packages which do this, and even some ModBus-aware software packages which can help with some message
translation tasks. (Do an internet search for “modbus rtu terminal software” to find options.)

•	 In order to use remote control to change values, or switch the DC output on or off, you must acti-
vate remote control first—either with a remote command, or from the manual control panel menu.

•	Remember that remote control may be blocked. See “3.4 Control Location” on page 12.

Page 20mPower DC Programming Guide (Rev A)

4.5 Reading Register Lists
Along with this programming guide, there is a register list for the 300 Series, and one for the 310/320 Series as separate 
PDF files. There is also a separate list specific to the 320 Series Front USB port which supports a subset of the full command 
set). These lists give an overview of the remote programming features available for the named series when using binary
communication protocols like ModBus. They are also a reference when controlling a unit via a field bus (CAN, CANopen, 
Profibus, Profinet, EtherCAT) or accessing it in programming environments like LabView or MatLab.

The lists explain how the data in a binary message has to be interpreted or how a register (with CANopen or an “index”
as it is called in EtherCAT) is specified. This will help the user to implement remote communication into custom software 
applications. Users who decide to work with SCPI command language usually do not need these lists. Later in this document,
the SCPI commands are referenced in a separate chapter.

4.5.1 Function Columns

The heads of the 5 columns next to the ModBus address column contain the names and codes of the supported ModBus
functions. An x in these columns marks the assignment of a register to any of the functions. For example, the coil registers
are usually writable and readable, so they’re assigned to Read Coils (0x01) and Write Single Coil (0x05).

4.5.2 Data type Column

Data type Length

char 1 Byte Single byte, used for strings
uint(8) 1 Byte Single byte
uint(16) 2 Bytes Double byte, al word or 16bit integer
uint(32) 4 Bytes Double word, al long or 32bit integer
float 4 Bytes Floating point value according to IEEE745 standard

4.5.3 Access Column

This column defines for every register whether the access is read only, write only or read/write.

R = Register is read only

W = Register is write only, and would not return a reasonable value when read from

RW = Register can be read or written

Writing to a register which allows write access (W, RW) is only possible during remote control.

4.5.4 Number of registers Column

With ModBus, a register always has a length of 2 bytes or a multiple of 2 bytes. This column tells how many 2-byte values
are used by the register. The value is always the half of the value in the Data length in bytes column.

Page 21mPower DC Programming Guide (Rev A)

4.5.5 Data Column

This column tells additional information about the data which can be written to or read from the register. Two, four, or
more bytes can be interpreted in different ways, depending on data type and content.

4.5.6 Profibus/Profinet slot & index Columns

These columns (when included) are used by Profibus/Profinet users to link the registers in the register list via values index
and slot to data blocks (SFBs) in the PLC software. While index is a direct parameter for the data block, the value slot has
to be used to find the address of a slot, which is variable, in order to get the parameter ID. For more see “6. Profibus & 
Profinet”.

4.5.7 EtherCAT SDO/PDO? Column

This column is only available in register lists for those series which support the optionally available Anybus interface
modules, and in particular the EtherCAT interface.

The column marks which of the generally per system available ModBus registers can be accessed by the CANopen over
Ethernet (CoE) protocol in form of indexes. Some of the marked registers are connected to PDOs, the rest are connected
as SDOs. Systems supporting the EtherCAT interface contain a downloadable data object list. Which of the registers are
connected to PDOs is described in section “9. EtherCAT”.

4.6 ModBus RTU in Detail
This protocol can be used with via built-in USB interfaces, built-in Ethernet interfaces, and also with some of the optionally
available AnyBus modules (see “3.3 Remote Communication Interfaces” on page 12). The addressed object when
using ModBus protocol is called a register. This document uses the terms address, register, or register address.

When transferring ModBus RTU messages via any Ethernet interface it’s called ModBus RTU over
Ethernet, which is not the same as ModBus TCP. ModBus TCP is run on port 502, and ModBus RTU
over Ethernet can run on a port other than 502.

4.6.1 Message types

The ModBus message system distinguishes between control messages, query messages, and response messages. Query
messages will cause the system to send a response message. Control messages only cause it to reply with an echo of the
message (in order to confirm reception).

4.6.2 Slave Address

mPower power supplies support ModBus binary messages and the text based SCPI language with automatic protocol
detection. When using ModBus, the first byte of every message (the slave address) has to be 0x00. See “3.2.1 Protocol
Detection” on page 11 for more details.

Page 22mPower DC Programming Guide (Rev A)

4.6.3 Functions

The second byte of a message contains a ModBus function code (“FC”), which determines whether the message is a
READ or WRITE message. It also determines, whether one or multiple registers are accessed. mPower systems support
the following ModBus functions:

Function Function name Description Example of use

Hex Dec Long Short

0x01 1 READ
Coils

RSC, RC Always reads 1 bit, but is returned as a full
register with a 16 bit value. For example,
the value 0xFF00 means logic 1, or TRUE.
This is different from the ModBus standard,
and may cause problems with ModBus
software tools.

Query the input / 
output condition

0x03 3 READ
Holding Registers

RHR Used to read n subsequent registers.
Results in n*2 bytes of data in the
response message.

Read the model name
string (1-40 bytes)

0x05 5 WRITE
Single Coil

WSC Used to write 16 subsequent bits which are
interpreted as 1 bit (TRUE or FALSE). This
is different from the ModBus standard, and
may cause problems with ModBus software
tools.

Switch system to
remote control.

0x06 6 WRITE
Single Register

WSR Used to write one register. Set values (U, I, P etc.)

0x10 16 WRITE
Multiple Registers

WMR Used to write n subsequent registers. be
used to write beyond the limits of a register
block, for example when trying to write
multiple set values (U, I, P) at once.

Write multiple values at
once within a register
block or write the user
text

The register list defines which of the above functions may be used with every register.

The bytes in a ModBus message are read from left to right (big endian format), except for the 16 bit
ModBus RTU checksum where low byte and high byte are switched.

4.6.4 Control messages (write)

When sending a status, a value, multiple values, or text, the data part of the message requires to define at least the target 
register and one value to write. The protocol checks the message only regarding the max. length of the register. After
the data part, the checksum is expected. So in case the data part would only contain the minimum two bytes and thus
the message would fulfil the protocol requirements for the selected function code, the checksum would be expected at 
the position of the 7th byte. If there were additional data bytes at that position or zeros and the checksum would be at a
different position in the message, the system would return an error. Therefore, the system will return an error, no matter
if the message is too short or too long, because the checksum is wrong. For message examples see “4.6.9. Examples of
ModBus RTU messages”.

Page 23mPower DC Programming Guide (Rev A)

WRITE Single Register

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Bytes 6+7

Addr FC Start reg. Data word CRC

0x00 0x06 0–65535 Value to write Checksum ModBus-CRC16

WRITE Multiple Registers

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Byte 6 Bytes 7-253 Last 2 Bytes

Addr FC Start reg. Number Count Data bytes CRC

0x00 0x10 0–65535 0–123 Number*2 n values to write Checksum ModBus-CRC16

WRITE Single Coil

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Bytes 6+7

Addr FC Register Data word CRC

0x00 0x05 0–65535 0x0000 (FALSE) or 0xFF00 (TRUE) Checksum ModBus-CRC16

The entire 16 bits of the data word represents 1 coil only, for writing and reading.

4.6.5 Query message

When querying something from the system, the response is expected to be immediate, and will be of varying length, but
always of the same format. For the query, the start register and the number of registers or coils to read are required.
The base of the ModBus data format is a register, a 16 bit integer value. When querying one register with READ Holding
Registers, the system will return two bytes, and when querying two registers it returns 4 bytes etc. For READ Coils, the
response will always be two bytes.

For message examples see “4.6.9. Examples of ModBus RTU messages”.

READ Holding Registers

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Bytes 6+7

Addr FC Start reg. Number CRC

0x00 0x03 0–65535 Number of regs to read (1–125) Checksum ModBus-CRC16

READ Coils

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Bytes 6+7

Addr FC Start reg. Number CRC

0x00 0x01 0–65535 Must always be 1 Checksum ModBus-CRC16

Reading coils here is not according to the ModBus specification. Reading a coil always returns 16 
coils, but all 16 are considered as one bit with either TRUE (0xFF00) or FALSE (0x0000).

Page 24mPower DC Programming Guide (Rev A)

4.6.6 Response messages

A response from the system is usually expected after a query or if something has been set and the system confirms the 
execution.

Expected response for WRITE Single Register:

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Bytes 6+7

Addr FC Start reg. Data CRC

0x00 0x06 0–65535 Written value echoed Checksum ModBus-CRC16

Expected response for WRITE Single Coil:

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Bytes 6+7

Addr FC Start reg. Data CRC

0x00 0x05 0–65535 Written value echoed Checksum ModBus-CRC16

Expected response for WRITE Multiple Registers:

Byte 0 Byte 1 Bytes 2+3 Bytes 4+5 Bytes 6+7

Addr FC Start reg. Data CRC

0x00 0x10 0–65535 Number of written registers Checksum ModBus-CRC16

Expected response for READ Holding Registers:

Byte 0 Byte 1 Byte 2 Bytes 3-253 Last 2 Bytes

Addr FC Data length in bytes Data CRC

0x00 0x03 2–250 Queried registers content Checksum ModBus-CRC16

Expected response for READ Coils:

Byte 0 Byte 1 Byte 2 Bytes 3+4 Bytes 5+6

Addr FC Data length in bytes Data CRC

0x00 0x01 2 Queried bit as 1 register
(always 16 coils)

Checksum ModBus-CRC16

Unexpected response (communication error):

Byte 0 Byte 1 Byte 2 Last 2 Bytes

Addr FC CRC

0x00 Function code + 0x80 Error code Checksum ModBus-CRC16

A communication error can have several reasons, like a wrong checksum or when attempting to
switch a system to remote control that has been set to Local or if it’s already remotely controlled by
another interface. See the communication error code list in “4.6.8. Communication errors”.

Page 25mPower DC Programming Guide (Rev A)

4.6.7 The ModBus checksum

The checksum at the end of ModBus RTU messages is a 16 bit checksum, but is not calculated as the usual CRC16
checksum. Furthermore, the byte order of the checksum in the message is reversed. Information about ModBus CRC16
and source code for implementation and calculation are available on the Internet, for example here:

http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf , section 2.5.1.2.

4.6.8 Communication errors

Communication errors are only related to digital communication with the system. Other alarms or errors of any kind which
can be generated and indicated by the system must not be mixed up with these.

The system will return unexpected error messages in case the previously sent message is in wrong format or if the
function cannot be executed by some reason. For example, when trying to write a set value with WRITE Single Register
while the system is not in remote control. Then the message is not accepted and the system will return an error message
instead of a confirmation message. The message format can be wrong if the checksum is bad or if you try to read a bit 
with function READ Holding Registers instead of READ Coils.

In case of an error, the response message contains the original function code added to 0x80, in order to identify the
response as error message.

Overview of function codes in error messages:

FC error Belongs to

0x81 READ Coils
0x83 READ Holding Registers
0x85 WRITE Single Coil
0x86 WRITE Single Register
0x90 WRITE Multiple Registers

Overview of the communication error codes which can be returned by the system:

Code Error Explaination
0x01 1 Wrong function code The function code in byte 1 of the ModBus message is not supported. See

“4.6.3. Functions” for supported codes. The error also occurs when trying
to read or write a register with a function code for which the register is not
defined.

0x02 2 Invalid address The register address you were trying to access with read or write is not
defined for your system. Every system series may have a different number 
of registers. Refer to the separate ModBus register list of the series your
system belongs to.

0x03 3 Wrong data or data length The length of data in the message is wrong or the data itself. For example,
a set value always requires two bytes of data. If the data part of the mes-
sage would be one byte only or three bytes, then the data length would be
wrong. Otherwise, when sending a set value of, for example, 0xE000 to a
register for which the maximum value is defined as 0xCCCC, this would be 
wrong data.

0x04 4 Execution Command could not be executed, depends on the situation
0x05 5 CRC The CRC16 checksum at the end of the ModBus RTU message is wrong

or has been transmitted in wrong byte order (high byte first instead of low 
byte)

http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

Page 26mPower DC Programming Guide (Rev A)

Code Error Explaination

0x07 7 Access denied Access to a certain register is not allowed or read only while trying to write,
or vice versa. The error also occurs when trying to write to a writable ad-
dress while the system is not in remote control or in remote control from a
different interface

0x17 23 System in local Indicates, that write access to the system is blocked by he Local condition,
so only read access is possible. Local means that remote control is not
allowed.

An example: You attempted to switch the system to remote in order to control it from PC, but instead of an echo of your
message it returns something like this: 0x00 0x85 0x07 0x52 0x92. This is an error message. The position of the function
code contains the value 0x85. According to the first table above, this is related to the function WRITE Single Coil. The
error code in the message is 0x7 which means, according to the second table above, the system has denied the access.
This can have different reasons, for example that the system is already in remote control via a different interface.

4.6.9 Examples of ModBus RTU messages

The examples can also be used for ModBus TCP, but they need to be extended by the required Mod-
Bus TCP header and stripped of the unnecessary checksum.

4.6.9.1 Writing a set value

Set values are adjustable limits for the physical values Current, Voltage, Power, and Resistance
(where available). They can only be written to a system if it has been switched to remote control
before via a digital interface.

Example: You want to set the current to 50%. According to the register lists, Set current value is at address 501 (0x1F5)
and assigned function is WRITE Single Register. Expecting the system to already be in remote control mode, the message
to build is this:

Message
to send:

Addr FC Start Data CRC
► Expected

response:
Addr FC Start Data CRC

0x00 0x06 0x01F5 0x6666 0x325F 0x00 0x06 0x01F5 0x6666 0x325F

In this case, the system is expected to return an echo of your message, indicating successful execution of the command.
The display of the system should now show 50% of what’s the maximum current of your system. For a power supply with
510 A nominal current, it should show 255.0 A, or for a model with 170 A current rating, it should show 85 A.

4.6.9.2 Query all actual values at once

The system holds three readable actual values of voltage, current and power. Actual values can be queried separately
or all at once. The advantage of a combined query is, that you gain a snapshot of the most recent actual values. When
querying separately, values may have changed already when sending the next query.

Page 27mPower DC Programming Guide (Rev A)

According to the register list, the actual values start from register 507. Three registers shall be read:

Message
to send:

Addr FC Start Data CRC
►

0x00 0x03 0x01FB 0x0003 0x7417

Possible
response:

Addr FC Len Data CRC
0x00 0x03 0x06 0x2620 0x0C9B 0x091B 0x9EC0

4.6.9.3 Read the nominal voltage of a system

The nominal voltage, like the other nominal values of current, power or resistance, is an important value to read from
a system. They’re all referenced for translating set values and actual values. It’s recommended to read them from the
system right after opening the digital communication line, unless the software shall not be universal.

According to the register list, the nominal voltage is a 4-byte float value in register 121.

Query
message:

Addr FC Start No. CRC
►

0x00 0x03 0x0079 0x0002 0x1403

Possible
response:

Addr FC Len Data CRC
0x00 0x03 0x04 0x42A00000 0xFEA9

Also see 4.6.6. The response contains a float value according to IEEE754 format, which translates to 80.0.

4.6.9.4 Read system status

All mPower DC 3 Series systems report their system status in register 505.

Query
message:

Addr FC Start No. CRC
►

0x00 0x03 0x01F9 0x0002 0x1417

Possible
response:

Addr FC Len Data CRC
0x00 0x03 0x04 0x00000483 0xA992

Also see 4.6.6. The response contains the value 0x483 which states that the system is in remote control via the USB port,
that the DC output is switched on, and that CC (constant current) mode is active.

Page 28mPower DC Programming Guide (Rev A)

4.6.9.5 Switch between remote and manual control

Before you can control a system from remote, it’s required to switch it to remote control. This is done by sending a certain
command.

The system will never switched to remote control automatically, and cannot be remote controlled in
this state. Reading from all readable registers is always possible.

The system will never exit remote control automatically, unless it’s switched off, or the AC supply is
cut. Remote control can be terminated by a command.

Switching to remote control may be inhibited by several circumstances and is usually indicated by an error message:

•	Condition Local is active (check the display on the front of your system or read the system status), which will prevent any
remote control. (See “3.4 Control Location” on page 12.)

•	The system is already remotely controlled by another interface.
•	The system is in setup mode, meaning a user has accessed the setup menu and not left it yet.

 ►How to switch a system to remote control:

1. If you are using the ModBus RTU protocol, you need to create and send a message according to the description
above, for example (in hex bytes): 00 05 01 92 FF 00 2D FA.

2. Once the switchover to remote control has been successful, the system will usually indicate the new condition in
the display or with a LED, as well as it echoes the message as a confirmation.

In case switching to remote control would be denied by the system, because option Allow remote control = No is set, then
the system will return an error message like 00 85 17 53 5E. According to ModBus specification, this is error 0x85 with 
error code 0x17.

Leaving remote control can be done in two ways: using the remote command, or by switching the system to Local.

 ►How to exit remote control:

1. If you are using the ModBus RTU protocol, you need to build and send a message according to the description
above, for example (in hex bytes): 00 05 01 92 00 00 6C 0A.

Page 29mPower DC Programming Guide (Rev A)

4.7 ModBus TCP in detail
This section is only about the differences to RTU. The core of a ModBus TCP message is ModBus RTU. Refer to “4.6.
ModBus RTU in Detail” for more information. Differences of ModBus TCP compared to ModBus RTU:

•	The message requires an additional MBAP header (6 bytes).
•	The checksum is omitted (2 bytes).
•	Transmission only via reserved port 502; any other port won't accept ModBus TCP frames.

The MBAP header is specified like this:

Bytes Meaning Explanation

0 + 1 Transaction identifier This identifies the message. It’s copied by the system in the response and is used to 
identify a certain message in a pool of incoming transmissions if multiple system are
communicating with the PC and the response is not immediately. The identifier is an 
arbitrary value between 0 and 65535.

2 + 3 Protocol identifier Here always 0 = ModBus protocol
4 + 5 Length Number of remaining bytes in the message, i.e. the length of the ModBus RTU core

message minus 2.

4.7.1 Example for a ModBus TCP message

The example for READ Holding Registers from “4.6.9.3. Read the nominal voltage of a system”, extended by the MBAP
header (arbitrary transaction identifier 0x4711 used):

Query
message:

MBAP Header Addr FC Start No.
►

0x4711 0x0000 0x0006 0x00 0x03 0x0079 0x0002

Possible
response:

MBAP Header Addr FC Len Data
0x4711 0x0000 0x0007 0x00 0x03 0x04 0x42A00000

The example is a query for reading the system’s nominal voltage. The response contains a floating point value in Data, 
which translates to 80(V).

Page 30mPower DC Programming Guide (Rev A)

4.8 Specific Register Notes
Many of the commands/registers are self-explainatory, but not all of them. Below are ones which likely need additional 
explanation.

4.8.1 Register 171

This allows to write and read a user-defined string of up 40 characters, which is intended to be used to identify a system.

4.8.2 Register 411

Described for SCPI in “5.17 Alarm management commands” on page 74.

When using ModBus, this register is intended to reset alarm bits as represented in the system status (register 505, see
below). Until these are reset, which is considered as an acknowledgement, the bits from previously occurred alarms
remain set, even if the alarms have subsided. Alarms which are still present while register 411 is used to reset the alarm
bits will of course be excluded from resetting. There is an exception: the system alarm OT (bit 19, overtemperature). This
will be cleared automatically once the unit has cooled down. After resetting the alarm bits, system alarms can only be
read in form of an alarm counter (registers 520 - 524).

4.8.3 Registers 500-503 (set values)

These are the most important registers to work with, because they define the DC output values of voltage, current, power 
and resistance (where featured). With ModBus, any set value is transmitted as percent value of the nominal system
values (0–100%), whereas for SCPI, real values are used.

Generally, before you can use R mode with systems where internal resistance is featured, it has to be activated (register
409), else the set value is ignored.

For 310 series units with the PV function active, the set value for current (register 501) is interpreted as irradiation value,
as long as the system is in PV mode. In other words, while the PV function is running, this register does not define the 
current limit for your system, but a parameter called irradiation, which is commonly used in solar panel simulation. In
manual operation, irradiation can be adjusted in 1% steps between 0% and 100%. With the set value of current it’s also
0-100%, according to definition of register 501, but with a significantly higher resolution.

4.8.4 Register 505 (system status)

This register represents the system condition in one 32-bit value. Some bits are grouped, and have to be interpreted as
a set. According to the register list, bits 0-4 of register 505 are a group that represents the control location (see “3.4.
Control Location”). By reading this register, you can furthermore detect if the system is already in remote control to see if
command “Remote mode = on” was executed by the system.

With SCPI, some but not all of these 32 bits of this register are represented in the status registers Questionable and
Operation. See “5.5. Status registers”.

4.8.4.1 When running master-slave

During master-slave operation (310/320 Series), the status register uses bit 29 (MSS) to indicate the master-slave safety 
mode, which is activated every time the master detects any problem in the communication with the slave(s), which can
occur due to a connection failure or heavy electrical interferences. The master unit will then set this bit and switch off all
DC outputs of the slaves being still online. Offline slaves will put themselves into a similar state and switch off DC.

After removal of the problem cause, the MS system has to be re-Initialized, which also clears the bit.

Page 31mPower DC Programming Guide (Rev A)

4.8.5 Registers 650 - 662 (master-slave configuration)

In 310/320 Series, this block of registers are used to configure the master-slave (MS) operation mode the same as you 
can do it from the control panel MENU. Refer to the system’s Operating Guide about how the MS works and what do to in
preparation of its remote control. For remote control of a MS system, it’s expected to be fully wired. Before MS operation,
slave units can be configured remotely, but during MS operation they can only be monitored, if required. It’s, however, 
recommend to only control the master unit. Configuration and activation of MS operation can also be done manually and 
remote control can be taken over later after the master has Initialized the system.

With the MS system not being set up yet, these registers have to be used in a certain order on all units:

1. Switch to remote control with register 402.

2. Activate MS operation mode with register 653.

3. Select with register 650 whether the unit you are configuring will be Master or Slave.

Additional steps are performed on only the master unit:

4. Initialize the MS system with register 654.

5. Optional: check with register 655, whether the initialization has been successful.

6. Optional: Query the number of initialized slaves with register 662. In case the returned number does not match
the number of slave units you want to use in the MS system, check the settings of all units and the cabling and
repeat the initialization.

7. Optional: read the nominal values (registers 656–660) of the previously Initialized MS system to be used as
value translation reference while running the MS.

The systems support reading the total ratings of voltage, current, power, and resistance even in MS
mode via registers 121–129, so registers 656, 658, and 660 are actually obsolete. Alternatively
they can still be used, but without the option to read the max/min resistance of the MS system. This  
can be done by reading the rated values from the master and dividing it by the number of units.

8. Optional: configure alarm thresholds, event thresholds and set value limits.

During MS operation, the remotely controlled master unit can be accessed like a single unit, with a few exceptions (see
system manual). Set values and actual values are always percent values related to certain nominal values. Access to
those registers is described in the other sections.

4.8.6 Registers 850 - 6695 (function generator)

While the register values fall in this zone, see “4.9. Remote Programming of Function Generator” for details.

4.8.7 Registers 9000 - 9009 (adjustment limits)

For SCPI, this is explained in “5.11. Adjustment limit commands”. ModBus users should also read that section for the
general handling of these settings. Apart from that, setting these parameters is like setting a set value (U, I, P, R).

4.8.8 Registers 10007 - 10900

These registers can be used to remotely configure the various built-in or optionally available digital interfaces. The 
registers are connected to the corresponding settings in the system’s setup menu, where featured.

Contrary to manual control, the settings for the pluggable interface modules of series IF-AB (for 310 Series) can even be
configured while the interface module is not yet installed.

Page 32mPower DC Programming Guide (Rev A)

4.8.9 Register from 12000 (advanced photovoltaics simulation, DIN EN 50530)

Photovoltaics simulation is a function based on the XY generator and is available on 310/320 Series power supplies.

All ModBus registers which represent parameters related to this simulation, and which can be written to the system or
read from are referenced in the EN 50530 standard document. The document is furthermore the reference for the user
regarding setup and correct use of this simulation feature.

The procedure to set up and control the extended PV simulation using ModBus protocol is not different to manual
handling (see user manuals of the systems) on the system’s control panel or when using SCPI commands (see examples
in section “5.18.2 Programming examples for PV simulation (DIN EN 50530)” on page 76). These step by step
examples have an extra column in the table that holds the related ModBus register number. One of these examples (#2)
converted to ModBus RTU format (percental set values translated for a system with 80 V and 170 A rating):

Configuration (before the start)

Step Command Description

1 00 05 01 92 FF 00 2D FA Activate remote control
2 00 06 2E E1 00 03 91 04 Activate PV simulation mode DAYET
3 00 06 2E F0 00 00 81 00 Select technology: Manual (all required parameters must be

defined, here as with commands 4-10)
4 00 10 2F 02 00 02 04 3F 4C CC CD F7 ED Fill factor voltage (FFU): 0,8
5 00 10 2F 04 00 02 04 3F 47 AE 14 EE FF Fill factor current (FFI): 0,78
6 00 10 2F 06 00 02 04 39 9D 49 52 84 57 Temperature coefficient α for ISC: 0,0003 /°C
7 00 10 2F 08 00 02 04 BB 44 9B A6 A1 7F Temperature coefficient β for UOC: -0,003 /°C
8 00 10 2F 0A 00 02 04 3D 94 7A E1 00 75 Scaling factor CU for UOC: 0,0725
9 00 10 2F 0C 00 02 04 39 66 AF CD 7F D1 Scaling factor CR for UOC: 0,00022 m²/W
10 00 10 2F 0E 00 02 04 3B 4E 70 3B A7 CE Scaling factor CG for UOC: 0,00315 W/m²
11 00 05 2E F1 FF 00 D5 30 Select input mode: ULIK
12 00 06 2F 10 61 47 E8 A8 Set open circuit voltage: 38 V (=0x6147)
13 00 06 2F 11 08 6F 97 26 Set short-circuit current: 7 A (=0x086F)
14 00 05 2E F2 FF 00 25 30 Activate data recording
15 00 05 2E E5 00 00 D4 C4 Deactivate interpolation of day trend data
16 00 06 01 F4 61 47 A1 B7 Set global voltage limit: ≥Uoc (=0x6147)
17 00 06 01 F6 CC CC 3C 80 Set global power limit: 100% (=0xCCCC)

Write day trend data (before the start)

Step Command Description

18 00 05 2E E6 FF 00 65 34 Select access mode: write
19 00 05 2E E7 FF 00 34 F4 Delete former data (should be executed every time before

loading new data)

Page 33mPower DC Programming Guide (Rev A)

Step Command Description

20 00 10 2E EA 00 06 0C 00 00 00 01 44 44 66
66 00 00 03 E8 88 8A

Write 1st day trend data set:
Irradiation: 500 W/m² (=0x4444)
Temperature: 20°C (=0x6666)
Dwell time: 1000 ms (=0x000003E8)

The dwell time is defined to have a minimum of 500 ms. However, for the very first day 
trend data set it’s expected to set 1000 ms or higher, because else the function run
might fail.

21 00 10 2E EA 00 06 0C 00 00 00 02 6D 3A 74
0D 00 00 05 DC E4 C3

Write 2nd day trend data set:
Irradiation: 800 W/m² (0x6D3A)
Temperature: 28°C (=0x740D)
Dwell time: 1500 ms (=0x000005DC)

... Write further data sets, a total of 500
519 00 10 2E EA 00 06 0C 00 00 01 F4 A3 D6 7F

FF 00 00 4E 20 34 AF
Write 500. day trend data set:
Irradiation: 1200 W/m² (=0xA3D6)
Temperature: 35°C (=0x7FFF)
Dwell time: 20000 ms (=0x000034AF)

Control, also during simulation run

Step Command Description

520 00 05 2E E6 FF 00 65 34 Start simulation. The simulation will stop automatically after
the time that results from the total of dwell times in all written
data sets

During the simulation, the index counter in register 12010 is updated with every next day trend point
on the curve. It can be read and used to determine at which point the curve has been stopped due
to an unexpected error, such as a system alarm.

Analysis after simulation end

Step Command Description

521 00 03 2E F4 00 02 8D 00 Read number (n) of recorded data sets. This number is not
related to the number of day trend data sets in use. This
feature records a new data set every 100 ms. Depending on
the total simulation time, the record buffer could fill (max. 
16 h record time) and overwrite existing data. It may become
necessary to calculate the total simulation time from the day
trend data sets and start reading the recorded data during
simulation, then clearing the buffer and later read the rest of
data.

522 00 10 2E F6 00 02 04 00 00 00 01 6C 5C Select first data set (index 1) for reading
523 00 03 2E F8 00 08 CD 04 Read data from data set (index) 1
... Read further n-1 data sets:

Page 34mPower DC Programming Guide (Rev A)

4.9 Remote Programming of Function Generator
Registers 850 - 6695

The integrated function generator available with the 310/320 Series systems is a complex feature. It’s configured and 
loaded with a lot of registers. Before you can run a function, setup is required every time, and in a certain order.

First of all, you need to decide which one of the two basic function generators you want to use: arbitrary or XY. Other
functions, belong to the function generator, but are realised only by code.

All function generator settings and loaded data (sequences, XY table) are not stored inside the sys-
tem and have to be loaded into the system every time before you can use the function generator.
These data and settings are completely separate from what you can setup and define for the func-
tion generator manually when using the control panel and touch display.

4.9.9.1 Procedure for the arbitrary generator

This generator is used to create wave functions like sine, square, triangle or trapezoidal.

Step 1 — Select, whether to apply the function to the voltage U (register 851) or the current I (register 852). Before you 
have made this selection, the system cannot accept sequence point data, because the sequence data is run through a
plausibility check against the system’s adjustment limits.

Step 2 — Define start sequence point (register 859), end sequence point (register 860) and number of cycles of that block 
to repeat (register 861).

Step 3 — Load data for x out of 99 sequence points (registers 900-2468, 8 values per sequence point).

Step 4 — Set global voltage limit (register 500), if the function is applied to the current. Else set global current limit 
(register 501, plus 499 for PSB 9000 series), if the function is applied to voltage. Set global power limit (register 502, plus
498 for PSB 9000 series) for both modes.

Step 5 — Control the function generator with start/stop (register 850).

Step 6 — When finished, leave the function generator by deselecting your former selection of either U (register 851) or I 
(register 852) again.

4.9.9.2 Programming example for the arbitrary generator

Before you can configure the arbitrary generator for a ramp it’s necessary to think about the best way to achieve the ramp 
generation. It’s important to keep in mind that the arbitrary generator stops at the end of the function run, unless you set
the repetition to infinite. After a stop, the DC input/output remains switched on. In case of a ramp, this is wanted, because 
the end value shall usually remain set for time x. However, the system will go to static mode again, setting the static set
values of U, I and P. The static values also apply for the period before the function run and for situations when the DC
output/input is already switched on.

The stop action and the static values are thus a little problematic for the ramp function. Why? Supposed, you wanted to 
have a power supply generate a ramp starting from 0 V. The static value for U (voltage) would then be set to 0. But after
the function stop, the system would also set 0 V and the voltage would drop from whatever value has been set during the
function run. Conclusion: the static value of voltage has to be part of the function.

In order to achieve this, the function has to consist of two parts: one for the rising or falling ramp and the other for the
static value. This can be done using two sequences of the arbitrary generator.

Assumption: you have a power supply and the ramp shall start from 0 V and rise to 50 V within 6 seconds. The end
voltage shall remain constant for 3 minutes (the time can be varied at will). Sequences 1 and 2 will be used. Remote
control is already active, we only need to configure the sequences. Since the ramp will make the voltage rise linearly, 
using only the DC part of a sequence, the parameters for the AC part (indexes 0 - 4) should be set to zero in order to avoid
remainders which could disturb the correct wave generation.

Page 35mPower DC Programming Guide (Rev A)

The first step is to activate function generator mode, in this case we select arbitrary generator for U:

Addr FC Start Data CRC
0x00 0x05 0x0353 0xFF00 0x7DBE

Next step is to create the ModBus message to configure sequence 1, the rising ramp. According to the register list start 
register 900 (WMR, function code 0x10) is assigned to sequence 1. Because the data part would not fit the width of this 
document’s page size, the 8 float values are below each other:

Addr FC Start Regs Bytes Data CRC Description

0x00 0x10 0x0384 0x10 0x20 0x00000000 Start value of AC part: 0 V
0x00000000 End value of AC part: 0 V
0x00000000 Start frequency of AC part: 0 Hz
0x00000000 End frequency of AC part: 0 Hz
0x00000000 Start angle of AC part: 0°
0x00000000 Start value of DC part: 0V
0x42480000 Start value of DC part: 50V
0x4AB71B00 0x5A14 Rise time in μs: 6,000,000 (6 seconds)

After this, the ModBus message to configure sequence 2, the static voltage would be next. Start register here is 916:

Addr FC Start Regs Bytes Data CRC Description

0x00 0x10 0x0394 0x10 0x20 0x00000000 Start value of AC part: 0 V
0x00000000 End value of AC part: 0 V
0x00000000 Start frequency of AC part: 0 Hz
0x00000000 End frequency of AC part: 0 Hz
0x00000000 Start angle of AC part: 0°
0x42480000 Start value of DC part: 50V
0x42480000 Start value of DC part: 50V
0x4D2BA950 0x6AD7 Sequenz time in μs: 180,000,000 (180 

seconds = 3 minutes)

And as last step, configuration of the arbitrary generator itself:

Addr FC Start Data CRC Description
0x00 0x06 0x035B 0x0001 0x384C Register 859, WSR, start sequence: 1
0x00 0x06 0x035C 0x0002 0xC98C Register 860, WSR, end sequence: 2
0x00 0x06 0x035D 0x0001 0xD84D Register 861, WSR, sequence cycles: 1
0x00 0x06 0x01F5 0xCCCC 0xCC80 Register 501, WSR, global current limit: 100%
0x00 0x06 0x01F6 0xCCCC 0x3C80 Register 502, WSR, global power limit: 100%

Setting the global values (current, power) to maximum or any other value that wouldn’t interfere the
ramp generation is necessary, especially when running multiple systems in master-slave where those
set values also limit the slaves’ output.

Now the entire function setup is done and the function can be started. If the DC output of your system would still be
off when starting the function, it will automatically switch on. Alternatively, you could switch it on separately with the

Page 36mPower DC Programming Guide (Rev A)

corresponding command and before actually running the function. But it’s not necessary here, because the voltage shall
start to rise from 0 V. In other situations where the starting level is not zero, it would be required to switch on the DC
output first and wait for the voltage to settle.

For the number of sequence cycles 1 is sufficient, but it can be changed at will. The the whole function would be repeated 
after 3 minutes and 6 seconds. The voltage, when using a power supply, would not instantly drop to 0 V at the end of the
first function run and before the second one starts. It depends on the load how long the voltage takes to sink and the 
ramp, when being graphically recorded on an oscilloscope, could look different than expected. This could be circumvented
by adding a third sequence which only uses some time for the voltage to go down.

Addr FC Start Data CRC Description
0x00 0x05 0x0352 0xFF00 0x2C7E Register 850, WSC, Run function

4.9.9.3 Procedure for the XY generator
Step 1:

Select the XY function mode with following registers:

Mode Register

UI 854
IU 855
Simple PV (only with power supplies) 426
FC (only with power supplies) 854 (as UI mode)

Step 2:

Load the XY table data in 256 blocks of 16 values (registers 2600 - 6695). This corresponds to max. 4096 values for a
measurement range of 0-125% UNom or INom. Less data can also be loaded, for instance 3277 values for 0-100%. All values
which are not set result in 0 V or 0 A.

Step 3:

This step is only required with older firmware versions. Rule of thumb: if the corresponding register list for the firmware 
version of your system still lists register 858, it must be used.

Submit table data (register 858).

Step 4:

Set static values which are not affected by the table

UI function: current (register 501 or CURR command) and power (register 502 or POW command)

IU function: voltage (register 500 or VOLT command) and power (register 502 or POW command)

Step 5:

Run the function generator by switching the DC input/output of your system on (register 405). For PV mode you may also 
want to control irradiation while the function is running. This is done by sending set values to register 501 (current), where
100% corresponds to a factor of 1 and 0% to a factor of 0. This factor is multiplied to the simulated current IMPP of the MPP
which usually is situated somewhere on the PV curve you loaded in step 2.

Step 6:

Exit the function generator by deselecting your former mode setting from step 1 via the same registers.

Page 37mPower DC Programming Guide (Rev A)

5 SCPI protocol

SCPI is an international standard for a clear text based command language. Details about the standard itself can be found
on the internet.

Be aware that not all models feature all of the commands discussed in this guide. As commands are discussed, if they are
not applicable to all series, the text will indicate to which series they’re compatible.

5.1 Syntax
The following syntax formats can occur in commands and/or responses according to “1999 SCPI Command reference” 
specification.

Values This numeric value corresponds to the value in the display of the system and depends on the
nominal values of the system. Rules:
- The value must be sent after the command and separated by a space
- Instead of a numeric value you can also use:
MIN corresponds to the minimum value of the parameter
MAX corresponds to the maximum value of the parameter

<NR1> Numeric values without decimal place
<NR2> Numeric values with decimal place (floating point)
<NR3> Like <NR2>, but with multiplier (kilo, milli etc.)
<NRf> <NR1> or <NR2> or <NR3>, negative values supported
Unit V (Volt), A (Ampere), W (Watt), OHM, s (Seconds)
<CHAR> 0..255: Decimal value
<+INT> 0..32768: Positive integer value (output from system)
<B0> 1 or ON: Function is/will be activated

0 or OFF: Function is/will be deactivated 
<B1> NONE: manual operation active, switching to remote control possible

LOCal: local (manual) operation only, reading of data possible
REMote: system is in remote control

<ERR> Error with number (-800 bis 399) and description
<SRD> String data, various formats:

- IP address as number string with dots as separator, for example “192.168.0.2”
- Key words, for example AUTO or OFF

<Time> [s]s.s[s][s][s][s][s][s] / Default format is seconds (s.s)
; The semicolon is used separate multiple commands within one message
: The colon separates the SCPI keywords (main system, subsystems)
[] Lowercase letters and the content of square brackets are optional
? The question mark identifies a message as query. A query can be combined with a control message 

(command concatenation). Note, that it’s required to wait for the response of the query before the
next control message can be sent.

-> Response from system

Page 38mPower DC Programming Guide (Rev A)

5.1.1 Concatenated commands

It’s possible to concatenate up to 5 commands in one message. Each command must be separated by a semicolon (;).

Example:

VOLT 80;CURR 20;POW 3kW

The commands in the string are processed from left to right, so the order of commands is important to achieve correct
results. When querying multiple values or parameters at once, the returned string is also in concatenated format, with the
queried returns separated by semicolons.

5.1.2 Upper and lower case

SCPI uses upper case commands by convention, though the mPower control system also accepts lower case.

5.1.3 Long form and short form

SCPI commands have a long form and a short form. The short form (e.g. SOUR) and the long form (e.g. SOURCE) can be
used arbitrarily. To distinguish both forms, the commands as described in the following sections are written partly in upper
case (indicating the short form), and partly in lower case (indicating the additional part of the long form).

5.1.4 Termination character

Some interfaces (GPIB is one) require a termination character to the message, but others don't (such as USB). When not
required, the termination character is optional, but often used anyway in order to maintain software compatibility between
several different interfaces.

The termination character to use is 0xA (LF, line feed).

5.1.5 Errors

Errors in terms of SCPI are only communication errors. According to the standard, systems using SCPI do not return errors
immediately. They have to be queried from the system. The query can occur directly with the error command (see) or by
first reading the signal bit err from the STB register (see “5.5. Status registers”).

The error format is defined by the standard and is made of a string containing a number (the actual error code) and an 
explanatory text. The following are error strings generated by mPower systems:

Error code / error text Description

0, "No error" No error
-100, "Command error" Command unknown
-102, "Syntax error" Command syntax wrong
-108, "Parameter not allowed" A command was sent with a parameter though the command doesn’t use

parameters
-200, "Execution error" Command could not be executed
-201, "Invalid while in local" Control command could not be executed, because system is in LOCAL mode
-220, "Parameter error" Wrong parameter used
-221, "Settings conflict" Command could not be executed because of the condition of the system (being in

MENU etc.)
-222, "Data out of range" Parameter could not be set because it exceeded a limit

Page 39mPower DC Programming Guide (Rev A)

-223, "Too much data" Too many parameters per command or too many commands at once
-224, "Illegal parameter value" A parameter not specified for the command has been sent
-999, "Safety OVP" Alarm Safety OVP (only available with specific models) has been triggered (see 

system manual). It requires to power cycle the system.

5.2 Value Format
In the SCPI command language real values are used in their decimal numeric text form, with or without unit identification. 
For example, if you wanted to set a current of 177.5 A you would use the simple command CURR 177.5 or, with units,
CURR 177.5 A. Likewise, values returned in responses are also in the decimal numeric text form.

Page 40mPower DC Programming Guide (Rev A)

5.3 Getting Started

5.3.1 Ping

It’s always recommended to ping a system first, in order to test if it responds at all. With SCPI, this is usually done by 
querying the identification string:

Protocol Command

SCPI *IDN?

As an immediate response, the system might send, for example (which happens to be Company Name, Part No., Serial
No., HMI version, KE version, DR version, User Text (none shown)):

Protocol Response

SCPI Marway Power Solutions, MPW 310-12-0080-120, 1960140001, V2.18 30.08.2019 V2.28 12.08.2019
V1.6.6,

5.3.2 Switch between remote and manual control

The system does not switch to remote control automatically, and cannot be remotely controlled with-
out being explicitly in remote control mode. However, reading status and values is always possible.

The system does not exit remote control automatically (when a remote command completes). The
system must be switched off (or lose AC supply), or commanded to switch back to manual control
(through control panel, or remote command).

Before you can remotely control a system, you need to switch it to remote control by sending a command. Switching to
remote control may be inhibited by several circumstances and is usually indicated by an error message:

•	Condition Local is active (check the display or control panel on the front of your system), which will prevent any remote
control (see “3.4. Control Location”).

•	The system is already remotely controlled by another interface
•	The system in setup mode, means the user has accessed the setup menu and not left it yet

 ►How to switch a system to remote control:

2. If you are using SCPI command language, send a text command (the space is required):
SYST:LOCK 1 —or— SYST:LOCK ON

Leaving remote control can be done in two ways: using the dedicated command or by switching the system to Local
condition. We will consider the first option, because this is about programming.

 ►How to exit remote control:

1. If you are using SCPI command language, send a text command (the space is required):
SYST:LOCK 0 —or— SYST:LOCK OFF

Page 41mPower DC Programming Guide (Rev A)

5.4 Standard IEEE commands
To support the legacy interface standards of GPIB and IEEE 488, some of the traditional commands have been
implemented.

*CLS
Clears the error queue and the status byte (STB).

*IDN?
Returns the system identification string, which contains following information, separated by commas.

1. Manufacturer
2. Model name
3. Serial number
4. Firmware version(s) (in case there are several, these are separated by a space)
5. User text (arbitrary user-definable text, as definable with SYST:CONFIG:USER:TEXT)

*RST
Sets the system to a defined state:

1. Switch to remote control (same as SYST:LOCK 1)
2. Set DC output to off
3. Clear alarm buffer
4. Clear status registers to default condition (QUEStionable Event, OPERation Event, STB)

*STB?
Reads the STatus Byte register. The signal run of the various system conditions and events is illustrated in the register model
below. The STB bits in particular:

•	Bit 0: sec_ques, Second Questionable Status Register is active (one or more events have occurred)
•	Bit 1: not used
•	Bit 2: err, Error Queue --> one or more errors in the error buffer. By reading the error buffer or sending *CLS it’s
flushed and the bit err is reset

•	Bit 3: ques, Questionable Status Register is active (one or more events have occurred)
•	Bit 4: not used
•	Bit 5: not used
•	Bit 6: not used
•	Bit 7: oper, Operation Status Register is active (one or more events have occurred)

Page 42mPower DC Programming Guide (Rev A)

5.5 Status registers
Not all system conditions and alarms can be read with dedicated SCPI commands. As an alternative, the remaining
system-related information are grouped in status registers. Using regular polling, the status byte (STB) can be a starting
point for reading the system status. It tells which status register has recorded at least one event. Apart from that, the
other status registers could also be polled directly. The difference would be that the user would have to determine which
bits in the register have changed by comparing the most recent value with an older value. The bits in the status byte
register will do that job for you. If they remain 0, nothing has happened.

Once a bit in the STB indicates (changes to 1) that there was an event recorded in QUES or OPER register, you could read
the corresponding event register of OPER and QUES, in order to find out which bits have changed in the COND register.

err

Questionable Status
QUES

oper

ques

STATUS
STB

0
0

0/1
0/1
0
0
0

0/1

0

1

7

6

5

4

3

2

Error 1
...

Error 5

Error Queue

<>0

OR

0

1

7

6

5

4

3

2

8

9

10

11

12

OR

Operation Status
OPER

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

0

1

7

6

5

4

3

2

8

9

10

11

OVP
OCP
OPP

OT
OVD
UVD
OCD
UCD
OPD CV

CC
CP
CR

Local
Remote

Output/Input on
Function

Power fail
MSS (MSP)

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

CONDITION

U = User defineable
D = Is 1 by default

ENABLE EVENT ENABLE

0
0
0
0
0
0
0
0

0/1
0/1
0/1
0/1

0
0
0
0
0
0
0
0

U/D
U/D
U/D
U/D

EVENT

STAT:QUES:COND? STAT:QUES:EVEN?

STAT:QUES:ENAB <n>
STAT:QUES:ENAB?

CONDITION

STAT:OPER:COND?

STAT:OPER:ENAB <n>
STAT:OPER:ENAB?

STAT:OPER:EVEN?

*STB?

U/D
U/D
U/D
U/D
U/D
U/D
U/D
U/D
U/D
U/D
U/D
U/D
U/D

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

13 0/1 U/D 0/1
14 0/1 U/D 0/1

0/1 U/D 0 12

Events recorded in the event registers STAT:QUES:EVENT and STAT:OPER:EVENT only record posi-
tive transitions (changes from 0 to 1).

There are differences in the status registers amongst the product series based on available features.
The Operating Guide of a given product series will have the details of which the features are avail-
able for that series’s registers by identifying the various alarms and events.

System alarms like OVP are signaled in the subregisters CONDITION and EVENT. Each has to be
acknowledged separately using commands SYST:ERR? and SYST:ERR:ALL?, These commands are
considered as alarm acknowledgement, and will clear the corresponding bit in CONDITION, but only
if the alarm condition is not present anymore. Alarms which have been acknowledged can be deter-
mined from the system in the form of an alarm counter. It’s recommended to regularly poll alarms
from the system and to query STAT:QUES? prior to SYST:ERR?.

Page 43mPower DC Programming Guide (Rev A)

STATus:QUEStionable?
Reads the Questionable status CONDITION or EVENT register.

Returns a 16 bit value representing system information from the register model in 5.5.

Query Forms:

STATus:QUEStionable:CONDition?
STATus:QUEStionable:EVENt?
STATus:QUEStionable?

Examples:

STAT:QUES? -> 3072  Reads the event register. This example reveals that bits 10 and 11 are set which identifies 
that Remote = active and Output/input on = on.

STAT:QUES:COND? Reads the condition register of the questionable status register. The value contains the
current snapshot of a number of status bits.

STATus:QUEStionable:ENABle <NR1>
Sets or reads the ENABLE register of the Questionable status register. The ENABLE register is a filter that enables all or 
single bits to signal an event to the status byte STB. By default, all bits of the ENABLE register are set. In case you want to
ignore certain bits, you just need to add the values of the remaining bits and send the value to the ENABLE register.

Returns the sum of the decimal-valued bits in the register.

Query Forms:

STATus:QUEStionable:ENABle? <0–32767>

Example:

STAT:QUES:ENAB 3081 Sets the enable register of the questionable status registers to 3072 and enables the bits
OVP (1), OT (8), Remote (1024), and Output/Input on (2048) for event reporting to STB.
(Note that 1 + 8 + 1024 + 2048 = 3081.)

STATus:OPERation?
Reads the Operation status EVENT or CONDITION register.

Returns a 16 bit value, which represents system information as defined in the register model in 5.5.

Query Forms:

STATus:OPERation:CONDition?
STATus:OPERation:EVENt?
STATus:OPERation?

Examples:

STAT:OPER? -> 256 Reads the operation register (identical to :EVENt?). A possible response would be a value
of 256, which tells, that bit 8 is set and according to the register model bit 8 signals, that
CV (constant voltage regulation) is active.

STAT:OPER:COND? Reads the condition register of the operation status registers.

Page 44mPower DC Programming Guide (Rev A)

STATus:OPERation:ENABle <NR1>
Sets or reads the Enable register of the Questionable status register. The Enable register is a filter. It enables single or all 
bits of the condition registers to change the corresponding bit in the event register. This also impacts the summary bit in
the status byte STB. By default, all bits of the Enable register are set to 1. If you want to use only some specific bits, add 
the bit values (see register model) and send the total to the Enable register.

Returns a value which represents the bits set to 1 in the Enable register (as seen in 5.5).

Query form:

STATus:OPERation:ENABle?

Value range:

<NR1> = 0, 256–3840 Since bits 0–7 are not used, the minimum value other than 0 starts with 256. Also, bit
12 is always zero, therefore the maximum sum of the bits is 3840.

Example:

STAT:OPER:ENAB 1792 Sets the Enable register of the Operation register to value 1792 and enables bits CV, CC
and CP for reporting events to the STB.

5.6 Status commands
Status commands are used to alter the status of the system in terms of activating remote control or switching the DC
output, or to query the current status.

SYSTem:LOCK <B0>
This command is used to activate remote control of a system. Remote control has to be activated first before you can 
send any command which change system status or values. Once remote control has been activated via one of the digital
interfaces, only that interface is in charge.

The activation of remote control can be refused by the system due to several reasons. It’s usually replied in form of a SCPI
error which is put into the SCPI error buffer. This buffer can be read with the error command.

Query form:

SYSTem:LOCK:OWNer?

Value range for set:

ON, OFF

Value range for query:

REMOTE, NONE, LOCAL

Page 45mPower DC Programming Guide (Rev A)

Examples:

SYST:LOCK ON Absolute short form. Requests the system to switch to remote control. The system then
usually indicates activated remote control either by a LED or a status text in the display.

SYSTEM:LOCK:OWNER? -> REMOTE
 Queries the lock owner regarding remote control. This can be used to verify whether the

system has accepted the request to switch to remote control or not. It will return one of
three different values:

 REMOTE = System is in remote control via any of the available interfaces

 NONE = System is not in remote control

 LOCAL = System is in LOCAL condition, which denies or interrupts remote control.

OUTPut <B0>
This command is used to switch the DC output on or off.

Query form:

OUTPut?

Value range:

ON, OFF

Examples:

OUTP 1 Absolute short form. Switches the DC output on if remote control is active.

OUTPUT? -> ON
 Queries the condition of the DC output, which will be returned as ON or OFF. Output state

cannot be assumed as the output might be switched off due to a system alarm.

Page 46mPower DC Programming Guide (Rev A)

SYSTem:ERRor?
This command is used to read a single error, or all errors, from the system’s internal SCPI error queue. This queue only
contains errors in relation to commands (i.e. wrong syntax, too high values etc.). It cannot return any system alarm. Those
are usually queried from the system by reading bits of the status registers (see “5.5. Status registers”). You can choose
either to query the next error multiple times until it says “No error,” or generally query all at once. After all errors have
been read from the buffer, it will be purged. (See also “4.6.8 Communication errors” on page 25.)

The queue is of type FIFO (first in, first out). This means that the first occurred error is returned first when querying them.

Querying errors with SYST:ERR? also clears bits related to system alarms in register QUEStionable 
(see “5.5. Status registers”), but only if the alarm condition has already receded. The query is con-
sidered as an acknowledgement by the user. Alarms which have been acknowledged this way can
then not be read from the register anymore.

Query forms:

SYSTem:ERRor? Queries the last or next error

SYSTem:ERRor:NEXT? Queries the last or next error

SYSTem:ERRor:ALL? Queries all errors in the buffer (up to 5)

Example:

SYST:ERR? -> 0,No error
  Absolute short form. The system replies to this query with a string that first contains an 

error code (see error code list) and second an error description. This is returned every
time no error is present, or after all errors have been returned.

SYSTEM:ERROR:ALL? This query will let the system return up to 5 concatenated errors in one string, separated
by comma plus space.

Page 47mPower DC Programming Guide (Rev A)

5.7 Set value commands

All set values (U, I, P, R), which have dedicated single commands and which you can send to the
system during remote control, are not only limited by the maximum nominal values of your particu-
lar system model, but are additionally limited by those adjustment Limits which you can define for 
manual adjustment.

[SOURce:]VOLTage <NRf>[Unit]
Sets the output voltage limit of the system within a certain range, which is either defined by adjustment limits, or is 
0–102% nominal value. When queried, this reads the last setting. Alternatively, parameters MIN or MAX can be used to
instantly set the voltage to the adjustable MINimum or MAXimum.

Returns a numeric value of the voltage limit setting.

Query form:

[SOURce:]VOLTage?

Value range:

<NRf> = 0–1.02 * nominal V 102% of nominal value for the model.

Examples:

VOLT 12 Absolute short form. Sets 12 V.

SOUR:VOLTAGE 24.5V  Mixed form short/long, with unit. Sets 24.5 V, unless the voltage adjustment range has 
been limited otherwise.

SOURCE:VOLTAGE MIN  Sets the voltage to the defined minimum, usually 0 V.

[SOURce:]CURRent <NRf>[Unit]
Sets the output current limit of the system within a certain range, which is either defined by adjustment limits, or is 
0–102% nominal value. When queried, this reads the last setting. Alternatively, parameters MIN or MAX can be used to
instantly set the current to the adjustable MINimum or MAXimum.

Returns a numeric value of the current limit setting.

Query form:

[SOURce:]CURRent?

Value range:

<NRf> = 0–1.02 * nominal V 102% of nominal value for the model.

Page 48mPower DC Programming Guide (Rev A)

Example:

CURR 170 Absolute short form. Sets 170 A.

SOUR:CURRENT 45.3A  Mixed form short/long, with unit. Sets 45.3 A, unless the adjustment range of the current 
has been limited otherwise.

SOURCE:CURRENT MAX  Sets the current to the defined maximum, which is either 102% of the rated current of the 
system, or to the value of adjustment limit I-max (also see 5.11).

[SOURce:]POWer <NRf>[Unit]
Sets the output power limit of the system within a certain range, which is either defined by adjustment limits, or is 
0–102% nominal value. When queried, this reads the last setting. Alternatively, parameters MIN or MAX can be used to
instantly set the current to the adjustable MINimum or MAXimum.

Returns a numeric value of the current limit setting.

Query form:

[SOURce:]POWer?

Value range:

<NRf> = 0–1.02 * nominal V 102% of nominal value for the model.

Examples:

POW 3000 Absolute short form. Sets 3000 W, unless the power adjustment range has been limited
otherwise.

SOUR:POWER 3.5kW  Mixed form short/long, with unit and magnitude Kilo. Sets 3.5 kW (3500 W), unless the 
adjustment range of the power has been limited otherwise.

SOURCE:POWER MIN  Sets the power to the defined minimum, which is usually 0 W.

[SOURce:]RESistance <NRf>[Unit]
Available on 310/320 Series.

This command will set the input resistance value in Ohms within a defined range, as it can be adjusted on the front 
panel. The mPower 310/320 units use this value to simulate an internal resistor in series to the output, where the output 
voltage differs from the adjusted value by an amount that calculates from the adjusted resistance value and actual output
current. The way of setting the resistance value on both system types is identical. The adjustable range can be limited
with an upper adjustment limit. Alternatively, parameters MIN or MAX can be used to instantly set the resistance to the
adjustable MINimum or MAXimum.

Returns a numeric value of the current limit setting.

Query form:

[SOURce:]RESistance?

Value range:

<NRf> = Min. resistance to max. resistance, according to technical specs of the model

Page 49mPower DC Programming Guide (Rev A)

Examples:

RES? Absolute short form. Queries the currently set resistance value.

SOUR:RESISTANCE 10  Mixed form short/long. Sets 10 Ω.

SOURCE:RES MIN  Sets the resistance to the minimum defined for the particular system model.

5.8 Measure commands
Actual values, as returned by the measuring commands, are the DC output values as they are present at the moment
they are queried. They are not necessarily identical to the corresponding set values. The system constantly measures the
actual values, and returns the last snapshot when queried.

The number of decimal places in the returned value will be identical to the value format in the system display and varies
from model to model. (There’s more about decimal places in the Operating Guides.)

MEASure:[SCALar:]VOLTage[:DC]?
Queries the system to return the last measured DC output voltage value in Volts.

Example:

MEAS:VOLT? -> 43.50 V
 Absolute short form. Queries the actual voltage. A response, which should be instant, will

return a value between 0% and 125% of nominal system voltage.

MEASure:[SCALar:]CURRent[:DC]?
Queries the system to return the last measured DC output current value in Amperes.

Example:

MEASURE:CURRENT? -> 100.1 A
 Queries the actual current only. A response, which should be instant, will return a value

between 0% and 125% of nominal system current.

MEASure:[SCALar:]POWer[:DC]?
Queries the system to return the last calculated DC output power value in Watts.

Example:

MEAS:POW? -> 2534 W
 Absolute short form. Queries the consumed supplied power. A response, which should be

instant, will return a value between 0% and 125% of nominal system power. No matter
how the actual power format is in the system’s display, here it will always be returned in
Watts.

Page 50mPower DC Programming Guide (Rev A)

MEASure:[SCALar:]ARRay?
Queries the system to return the last measured actual values of voltage, current, and power (in that sequence) ,
separated by commas, and with units.

Example:

MEAS:ARR? -> 12.5 V, 33.3 A, 420 W
 Absolute short form. A response, which should be instant, will return three values between

0% and 125% of nominal system values.

5.9 Protective feature commands
mPower systems feature a set of system alarms, partly for self-protection, partly for the protection of connected
equipment. Additionally, there is a supervision feature which can monitor DC output attributes like voltage, current, or
power for exceeding user-defined limits, and trigger user-definable actions like an acoustic alarm or shutdown of the DC 
output. Configuration of the supervision features can be done manually in the user profile, or by remote commands.

[SOURce:]VOLTage:PROTection[:LEVel] <NRf>[Unit]
This command is connected to the adjustable value OVP (overvoltage protection). The value is adjustable between 0 and
110% nominal system voltage. It defines a threshold where the system switches the DC output off whether the system 
has generated a voltage higher than this threshold, or the excess is coming from an outside source. When controlling a
source, this feature usually serves to protect the connected load from overvoltage and thus damage. This can occur if the
output voltage is accidentally adjusted to a dangerous level.

Query form:

[SOURce:]VOLTage:PROTection[:LEVel]?

Value range:

0–1.1 * nominal voltage of the system

Examples:

VOLT:PROT 88 Absolute short form. Sets the OVP threshold to 88 V. At a model with 80 V nominal voltage,
this is 110% of the maximum voltage and the maximum OVP value.

[SOURce:]CURRent:PROTection[:LEVel] <NRf>[Unit]
This command is connected to the adjustable value OCP (overcurrent protection). The value is adjustable between 0
and 110% nominal system current. It defines a threshold where the system switches the DC output off. Once the output 
current reaches the threshold, the system will instantly switch the DC output off. The threshold is only effective if it’s
adjusted to a lower value than the output current, because otherwise the system would just limit the current, but not
switch off. If current value and overcurrent protection are adjusted to the same value, the OCP has priority and will switch
off rather than limit.

Query form:

[SOURce:]CURRent:PROTection[:LEVel]?

Page 51mPower DC Programming Guide (Rev A)

Value range:

0–1.1 * nominal current of the system

Example:

CURR:PROT 100 Absolute short form. Sets the OCP threshold to 100 A.

[SOURce:]POWer:PROTection[:LEVel] <NRf>[Unit]
This command is connected to the adjustable value OPP (overpower protection). The value is adjustable between 0 and
110% nominal system power. It defines a threshold where the system switches the DC output off. This feature helps to 
protect equipment from exceeding a certain power load. Once the output power reaches the threshold, the system will
instantly switch the DC output off. The threshold is only effective if it’s adjusted to a lower value than the output power,
otherwise the system will just limit the power, but not switch off. If power value and overpower protection are adjusted to
the same value, the OPP has priority and will switch off rather than limit.

Query form:

[SOURce:]POWer:PROTection[:LEVel]?

Value range:

0–1.1 * nominal power of the system

Example:

POW:PROT 1.5kW Absolute short form. Sets the OPP threshold to 1.5 kW.

5.10 Supervision feature commands
Available on 310/320 Series.

The commands below enable the remote configuration of the supervision features (Events) of the system, related to 
voltage, current, or power on the DC output.

Command Description

SYSTem:CONFig:UVD[?] <NRf>[Unit]
SYSTem:CONFig:UVD:ACTion[?] {NONE|SIGNAL|WARNING|ALARM}

Identical to event UVD, as
configurable in the system menu

SYSTem:CONFig:UCD[?] <NRf>[Unit]
SYSTem:CONFig:UCD:ACTion[?] {NONE|SIGNAL|WARNING|ALARM}

Identical to event UCD, as
configurable in the system menu

SYSTem:CONFig:OVD[?] <NRf>[Unit]
SYSTem:CONFig:OVD:ACTion[?] {NONE|SIGNAL|WARNING|ALARM}

Identical to event OVD, as
configurable in the system menu

SYSTem:CONFig:OCD[?] <NRf>[Unit]
SYSTem:CONFig:OCD:ACTion[?] {NONE|SIGNAL|WARNING|ALARM}

Identical to event OCD as
configurable uin the system menu

SYSTem:CONFig:OPD[?] <NRf>[Unit]
SYSTem:CONFig:OPD:ACTion[?] {NONE|SIGNAL|WARNING|ALARM}

Identical to event OPD, as
configurable in the system menu

Page 52mPower DC Programming Guide (Rev A)

The :ACTion can have following parameters (also see the system’s operation guide):

NONE = Event inactive, no supervision

SIGNAL = As soon as the event occurs, text is presented in the status field of the system display, and a bit in the 
Questionable Register (STAT:QUES?) is set (see “5.5. Status registers”). The bit indicates that a specific event has 
occurred. This can be used to record the event.

WARNING = As soon as the event occurs, a warning pop-up is presented in the system display, and a bit in the
Questionable Register (STAT:QUES?) is set (see “5.5. Status registers”). The bit indicates that a specific event has 
occurred. This can be used to record the event.

ALARM = As soon as the event occurs, a warning pop-up is presented in the system display, as well as an acoustic alarm
is initiated, the DC output is switched off, and a bit in the Questionable Register (STAT:QUES?) is set (see “5.5. Status
registers”). The bit indicates, that a specific event has occurred. This can be used to record the event.

The action ALARM lets the system act similar to when a system alarm occurs. However, system
alarms have priority. This means that if, for example, OVP and OVD were equal, and the output volt-
age reached that level, the system would initiate an OV alarm rather than an OVD event.

5.11 Adjustment limit commands
Adjustment limits are additional, globally effective, adjustable limits for the set values U, I, P, and R (where featured). The
purpose is to narrow the standard 0–100% adjustment range and to prevent, for example, accidently setting too high a
voltage for the connected equipment. One could use overvoltage protection (OVP) for a similar purpose, but it’s generally
better to prevent undesired set values in the first place.

In case a set value is sent to the system that would exceed an adjustment limit, no matter if too high or too low, the
system will ignore it, and put an error into the error queue. At the same time, it’s impossible to set the lower adjustment
limit (:LOW) higher than the related set value or, vice versa, the upper adjustment limit.

These commands are connected to the Limits settings, as you can adjust them with the on-board controls in the setup
menu of your system (except the 320 series slave units). Refer to the system manuals for details.

Command 300 310
320

[SOURce:]VOLTage:LIMit:LOW[?] <NRf>[Unit]
Identical to value U-min, as configurable at the system

Y Y

[SOURce:]VOLTage:LIMit:HIGH[?] <NRf>[Unit]
Identical to value U-max, as configurable at the system

Y Y

[SOURce:]CURRent:LIMit:LOW[?] <NRf>[Unit]
Identical to value I-min, as configurable at the system

Y Y

[SOURce:]CURRent:LIMit:HIGH[?] <NRf>[Unit]
Identical to value I-max, as configurable at the system

Y Y

[SOURce:]POWer:LIMit:HIGH[?] <NRf>[Unit]
Identical to value P-max, as configurable at the system

Y Y

[SOURce:]RESistance:LIMit:HIGH[?] <NRf>[Unit]
Identical to value R-max, as configurable at the system

─ Y

Page 53mPower DC Programming Guide (Rev A)

5.12 Master-slave operation commands
The commands, as listed below, are used to remotely configure and control the master-slave mode (short: MS). This is 
avaiable on the 310/320 series. (The 300 Series parallel operation using the Share bus is not the same as this Master/
Slave feature.) The commands are connected to the related settings in the system setup menu. For details about MS refer
to the system’s operation manual.

Configuration and control require a certain procedure. Configuration should always be first, but this can be done either 
by remote control or manual control on the system’s front panel. This allows the master-slave operation to instantly start
after activating remote control.

The commands in the table below are listed in the sequence they should be used (top to bottom). The configuration of MS 
can be skipped if already done manually at the system’s control panel or previously in remote control, and nothing has
changed.

Command Description

SYSTem:MS:ENABle {ON|OFF} Enables (ON) or disables (OFF) master-slave (MS) mode

SYSTem:MS:ENABle? Queries, whether the MS is enabled or not

SYSTem:MS:LINK {MASTER|SLAVE}
SYSTem:MS:LINK?

Defines or queries the role of the system in the MS system:
MASTER = System will be master unit
SLAVE = System will be slave unit

SYSTem:MS:Initialization Starts the MS initialization with the given settings. Also refer to the
systems’s operating manual. After a successful initialization, the MS
mode can be controlled with further commands. To test if the init has
been successful, the next command can be used:

SYSTem:MS:CONDition? Queries the result of a former MS init. Possible return values:
INIT = Init was successful
NO INIT = Init was not successful
An init is also successful if there is only a master. In order to find out 
whether you have a complete MS system available or not, you would
have to query the number of Initialized units from the master with
command SYST:MS:UNITS? (see below). Any value other than 0 means, 
the MS system is Initialized and available for control.

SYSTem:MS:UNITs? Queries the number of units that have been Initialized successfully.
The number can differ from the expected value, if the master did not
Initialize one or multiple slaves due to any reason. If only the master has
Initialized itself, the command will return a 1.

Page 54mPower DC Programming Guide (Rev A)

5.13 General query commands
These commands are used to query other information from the system.

Command 300 310
320

SYSTem:NOMinal:VOLTage?
Queries the nominal, i.e. rated input/output voltage of a single system or an 
Initialized master-slave system

Y Y

SYSTem:NOMinal:CURRent?
Queries the nominal, i.e. rated input/output current of a single system or an 
Initialized master-slave system

Y Y

SYSTem:NOMinal:POWer?
Queries the nominal, i.e. rated input/output power of a single system or an 
Initialized master-slave system

Y Y

SYSTem:NOMinal:RESistance:MINimum?
Queries the minimum internal resistance value of a single system or an Initialized
master-slave system. This value is usually not zero with electronic loads.

─ Y

SYSTem:NOMinal:RESistance:MAXimum?
Queries the maximum internal resistance value of a single system or an Initialized
master-slave system

─ Y

SYSTem:System:CLAss?
Queries the system class and returns a value which defines to what series the 
system belongs to. This is an easy way to distinguish different system series.

Y Y

Page 55mPower DC Programming Guide (Rev A)

5.14 System configuration commands
The commands as listed below are used to modify settings of the system configuration. The settings can be part of the 
current user profile (see system’s operating manual). Any modification on the configuration requires activated remote 
control. These settings are automatically stored.

5.14.1 General configuration commands

Command 300 310
320

POWer:STAGe:AFTer:REMote { AUTO|OFF }
POWer:STAGe:AFTer:REMote?
Defines, how the DC input/output of the system shall be after leaving remote 
control.
AUTO = Last condition remains
OFF = DC input/output will be switched off

Y Y

SYSTem:CONFig:INPut:RESTore[?] {AUTO|OFF}
SYSTem:CONFig:OUTPut:RESTore[?] {AUTO|OFF}
Defines the condition of DC input/output after the system is powered. This is 
connected to the system setting “DC input after power on” resp. “DC output after
power on”.
AUTO = DC input/output will be restored to the condition it had when switching the 
system off the last time
OFF = DC input/output will always be off

Y Y

SYSTem:CONFig:USER:TEXT <SRD>
SYSTem:CONFig:USER:TEXT?
Writes or queries a user-definable text of up to 40 characters permanently to the 
system. This string can be used to add custom information to the unit, in order to
distinguish it from other, identical models, alternatively to the serial number.

Y Y

SYSTem:CONFig:ANAlog:PIN6 {OT|PF|ALL}
SYSTem:CONFig:ANAlog:PIN6?
Defines what system alarms are signaled on pin 6.
OT = Pin 6 only signals OverTemperature
PF = Pin 6 only signals Power Fail
All = Pin 6 signals both (default)

─ Y

SYSTem:CONFig:ANAlog:PIN14 {OVP|OCP|OPP|OVP/OCP|OVP/OPP|OCP/
OPP|ALL}
SYSTem:CONFig:ANAlog:PIN14?
Defines what system alarms are signaled on pin 14. There are options to signal 
the three system alarms OVP, OCP and OPP separately or as combination of two or
signal all (logical OR)..

─ Y

SYSTem:CONFig:ANAlog:PIN15 {CONT|POW}
SYSTem:CONFig:ANAlog:PIN15?
Defines what status is signaled on pin 15.
CONT = Regulation mode CV (default)
POW = DC terminal on/off

─ Y

Page 56mPower DC Programming Guide (Rev A)

Command 300 310
320

SYSTem:CONFig:ANAlog:REFerence {5|10}
SYSTem:CONFig:ANAlog:REFerence?
Selects the voltage range for analog inputs and outputs of the analog interface.
This has no effect on anything concerning digital remote control.
5 = 0–5 V range
10 = 0–10 V range (factory setting)

Y Y

SYSTem:CONFig:ANAlog:REMSB:LEVel {NORMAL|INVERTED}
SYSTem:CONFig:ANAlog:REMSB:LEVel?
Determines how pin REM-SB of the analog interface (see system manual) shall be
interpreted by the system:
NORMAL = level and conditions as described in the manual (factory setting)
INVERTED = level and conditions are interpreted as inverted

Y Y

SYSTem:CONFig:ANAlog:REMSB:ACTion {OFF|AUTO}
SYSTem:CONFig:ANAlog:REMSB:ACTion?
Determines the action that is caused by using pin REM-SB of the analog interface
in connection with DC input/output of the system:
OFF = pin can only be used to switch the DC input/output off
AUTO = pin can be used to switch off and on again, if the DC input/output was at 
least switched on once by pushbutton on the control panel or digital command

Y Y

SYSTem:CONFig:MODE {UIP|UIR}
SYSTem:CONFig:MODE?
Selects the operation mode between U/I/P and U/I/R. Both modes are 
available for electronic loads and also on select power supplies. By selecting
U/I/R, the adjustable resistance  value (command [SOURce:]RESistance resp. 
SINK:RESistance) is unlocked. Activated U/I/R mode can only be detected in the 
display from the resistance value being shown.

─ Y

SYSTem:COMMunicate:PROTocol:MODBus {ENABLE|DISABLE}
SYSTem:COMMunicate:PROTocol:MODBus?
Enables or disables ModBus protocol on the system. This setting is stored. After
disabling ModBus with this command, further ModBus messages are ignored,
so that only SCPI commands are accepted. Only one of both protocols can be
deactivated at the same time.

Y Y

SYSTem:COMMunicate:TIMeout {5–65535}
SYSTem:COMMunicate:TIMeout?
Defines a timeout in milliseconds (factory setting: 5 ms), a max. time that can 
elapse between two consecutive bytes, before the system considers the message
as "completely received". For details refer to section 3.7.
Note: this only applies for serial interfaces (USB, RS232)

Y Y

SYSTem:ALARm:ACTion:PFAil { AUTO|OFF }
SYSTem:ALARm:ACTion:PFAil?
Defines, how the DC input/output of the system shall be after a power fail (PF) 
alarm, which could be a mains blackout or similar and after which the system could
continue its work automatically.
AUTO = DC input/output condition before PF is restored 
OFF = DC input/output will be switched off (default setting)

Y Y

Page 57mPower DC Programming Guide (Rev A)

Command 300 310
320

SYSTem:ALARm:ACTion:OTEMperature { AUTO|OFF }
SYSTem:ALARm:ACTion:OTEMperature?
Defines, how the DC input/output of the system shall be after the system has 
recovered, i. e. cooled down after an overtemperature (OT) alarm.
AUTO = DC input/output condition before OT is restored (default setting)
OFF = DC input/output will be switched off

Y Y

5.14.2 Anybus configuration commands

Available on 310 Series.

Most of the Anybus interface modules can also be remotely configured using SCPI commands, either via USB port or even 
via the interface itself. These settings are always saved automatically.

Command Description

SYSTem:COMMunicate:INTerface:CODE? Returns a value, representing a model code for the
installed Anybus interface module:
  5 = Profibus
 9 = RS232
16 = CANopen
18 = ModBus TCP 1P
19 = Profinet/IO 1P
20 = Ethernet 1P

21 = Ethernet 2P
22 = ModBus TCP 2P
23 = Profinet/IO 2P
25 = CAN
26 = EtherCAT

SYSTem:COMMunicate:INTerface:TYPE? Queries the name of the installed Anybus interface
module.

SYSTem:COMMunicate:INTerface:SERial? Queries the serial number of the installed Anybus
interface module.

SYSTem:COMMunicate:INTerface:ADDRess <NR1>
SYSTem:COMMunicate:INTerface:ADDRess?

Sets the Profibus address of the Profibus module IF-AB-
PBUS or queries it. Allowed range: 0–125

SYSTem:COMMunicate:PROFibus:ID? Queries the Profibus ID of the system manufacturer.

SYSTem:COMMunicate:PROFibus:FTAG <SRD>
SYSTem:COMMunicate:PROFibus:FTAG?

Sets or queries the Profibus/Profinet specific “function 
tag”, a string of up to 32 characters

SYSTem:COMMunicate:PROFibus:LTAG <SRD>
SYSTem:COMMunicate:PROFibus:LTAG?

Sets or queries the Profibus/Profinet specific “location 
tag”, a string of up to 22 characters

SYSTem:COMMunicate:PROFibus:DATE <SRD>
SYSTem:COMMunicate:PROFibus:DATE?

Sets or queries the Profibus/Profinet specific “date 
tag”, a date/time string of up to 40 characters

SYSTem:COMMunicate:PROFibus:DESCription <SRD>
SYSTem:COMMunicate:PROFibus:DESCription?

Sets or queries the Profibus/Profinet specific 
“description” tag, a string of up to 54 characters

SYSTem:COMMunicate:PROFibus:NAME <SRD>
SYSTem:COMMunicate:PROFibus:NAME?

Sets or queries the Profinet specific “station name”, a 
string of up to 200 characters

Page 58mPower DC Programming Guide (Rev A)

Command Description

SYSTem:COMMunicate:INTerface:BAUD <NR1>
SYSTem:COMMunicate:INTerface:BAUD?

Queries or sets the bus speed, i.e. baud rate of a
CANopen or RS232 interface module. The system will
only save the value. This means, with value 3 being
saved and CANopen installed, it will run at 100 kbps
and with RS232 installed, with 19200 Baud.

Value CANopen CAN RS232

0 10 kbps 10 kbps 2400 Bd
1 20 kbps 20 kbps 4800 Bd
2 50 kbps 50 kbps 9600 Bd
3 100 kbps 100 kbps 19200 Bd
4 125 kbps 125 kbps 38400 Bd
5 250 kbps 250 kbps 57600 Bd
6 500 kbps 500 kbps 115200 Bd
7 800 kbps 1 Mbps -
8 1 Mbps - -
9 Auto - -

SYSTem:COMMunicate:CAN:BROadcast <NR1>
SYSTem:COMMunicate:CAN:BROadcast?

Sets the CAN broadcast ID for normal CAN
communication. Allowed range:
0–2047 (11 bit) resp. 0–536870911 (29 bit)

SYSTem:COMMunicate:CAN:DLC {AUTO|FILL}
SYSTem:COMMunicate:CAN:DLC?

CAN data length setting for response messages from
the system.
AUTO = the number of data bytes in a CAN message
from the system (response) varies according to the
used command/register (default)
FILL = the number of data bytes in a CAN message is
always 8, filled with zeros

SYSTem:COMMunicate:CAN:FORMat {BASE|EXT}
SYSTem:COMMunicate:CAN:FORMat?

Selects the CAN address format.
BASE = 11 Bit (CAN 2.0A) (default)
EXT = 29 Bit (CAN 2.0B)

SYSTem:COMMunicate:CAN:NODe <NR1>
SYSTem:COMMunicate:CAN:NODe?

Sets the CAN base ID for normal CAN communication.
Allowed range:
0–2047 (11 bit) resp. 0–536870911 (29 bit)

SYSTem:COMMunicate:CAN:READ:NODe <NR1>
SYSTem:COMMunicate:CAN:READ:NODe?

Sets the CAN base ID for cyclic. Also see section 8.3.5.
Allowed range:
0–2047 (11 bit) resp. 0–536870911 (29 bit)

SYSTem:COMMunicate:CAN:READ:ACTual <NR1>
SYSTem:COMMunicate:CAN:READ:ACTual?

Defines the interval (in milliseconds) for the cyclic 
read of the system’s actual values (U, I, P) over CAN
interface IF-AB-CAN. Also see section 8.3.5. Allowed
parameter range: 0 or 20–5000
(0 = cyclic read for this object is deactivated)

SYSTem:COMMunicate:CAN:READ:ALIMits <NR1>
SYSTem:COMMunicate:CAN:READ:ALIMits?

Defines the interval (in milliseconds) for the cyclic read 
of the system’s adjustment limits for U and I over CAN
interface IF-AB-CAN. Also see section 8.3.5. Allowed
parameter range: 0 or 20–5000
(0 = cyclic read for this object is deactivated)

Page 59mPower DC Programming Guide (Rev A)

Command Description

SYSTem:COMMunicate:CAN:READ:BLIMits <NR1>
SYSTem:COMMunicate:CAN:READ:BLIMits?

Defines the interval (in milliseconds) for the cyclic read 
of the system’s adjustment limits for P and R (with
PSB/PSBE 9000: power and resistance of source 
mode) over CAN interface IF-AB-CAN. Also see section
8.3.5. Allowed parameter range: 0 or 20–5000
(0 = cyclic read for this object is deactivated)

SYSTem:COMMunicate:CAN:READ:SETS <NR1>
SYSTem:COMMunicate:CAN:READ:SETS?

Defines the interval (in milliseconds) for the cyclic read 
of the system’s set values (U, I, P, R) over CAN interface
IF-AB-CAN. Also see section 8.3.5. Allowed parameter
range: 0 or 20–5000
(0 = cyclic read for this object is deactivated)

SYSTem:COMMunicate:CAN:READ:STAT <NR1>
SYSTem:COMMunicate:CAN:READ:STAT?

Defines the interval (in milliseconds) for the cyclic read 
of the system’s status over CAN interface IF-AB-CAN.
Also see section 8.3.5. Allowed parameter range: 0 or
20–5000
(0 = cyclic read for this object is deactivated)

SYSTem:COMMunicate:CAN:SEND:NODe <NR1>
SYSTem:COMMunicate:CAN:SEND:NODe?

Sets the CAN base ID for cyclic send. Also see section
8.3.2. Allowed range:
0–2047 (11 bit) resp. 0–536870911 (29 bit)

SYSTem:COMMunicate:CAN:TERMination {ON|OFF}
SYSTem:COMMunicate:CAN:TERMination?

Switches the integrated CAN bus termination resistor
ON or OFF

5.14.3 Ethernet configuration commands

Available on 300 and 310 Series.

The commands below are related to any Ethernet interface port, no matter if built-in or ANybus module. Some commands
are only supported when an Anybus interface module is used.

Command Description

SYSTem:COMMunicate:LAN:1SPEed[?]
{AUTO|10HALF|10FULL|100HALF|100FULL

SYSTem:COMMunicate:LAN:2SPEed[?]
{AUTO|10HALF|10FULL|100HALF|100FULL

Only for IF-AB Ethernet modules (ETH, MBUS)
Sets the communication speed of the network port(s)
of Anybus Ethernet interfaces with one port (P1) or two
ports (P1, P2):
AUTO = Auto negotiation
10HALF = 10MBit, half duplex
10FULL = 10MBit, full duplex
100HALF = 100MBit, half duplex
100FULL = 100MBit, full duplex

SYSTem:COMMunicate:LAN:ADDRess[?] <SRD> Queries or sets the IP address of the selected Ethernet
interface. When setting the IP, the string has to be in
the typical IP format like this: 192.168.0.2

SYSTem:COMMunicate:LAN:CONTrol[?] {0–65535} Queries or sets the TCP port of the selected Ethernet
interface. Default is 5025, used for ModBus RTU or
SCPI communication. Systems supporting ModBus TCP
have port 502 activated and reserved by default, so
502 is illegal to be set with this command.

Page 60mPower DC Programming Guide (Rev A)

Command Description

SYSTem:COMMunicate:LAN:DHCP[?] {ON|OFF} Activates (=ON) or deactivates (=OFF) the DHCP
functionality for the selected Ethernet interface. Default
is OFF, so the IP as set with :ADDR command above is
used.

SYSTem:COMMunicate:LAN:DNS1[?] <SRD>
SYSTem:COMMunicate:LAN:DNS2[?] <SRD>

Queries or sets the network address of the first DNS1 
of the selected Ethernet interface, plus also for the
second DNS2 (only with Anybus modules).

SYSTem:COMMunicate:LAN:DOMain[?] <SRD> Queries or sets the domain name (refer to network
terminology for details). This is a simple ASCII string of
up to 54 characters.
The domain can be used to select and access a
particular system in the network without knowing the IP
address.

SYSTem:COMMunicate:LAN:GATeway[?] <SRD> Queries or sets the gateway address of the selected
Ethernet interface. Format is the same as with the IP.
This address is often not used and can thus be left at
the default setting.

SYSTem:COMMunicate:LAN:HOSTname[?] <SRD> Queries or set the host name (refer to network
terminology for details). This is a simple ASCII string of
up to 54 characters.

SYSTem:COMMunicate:LAN:KEEPalive[?] {ON|OFF} Enables / disables the  "TCP keep-alive" for the 
selected Ethernet interface. Also see “3.6. Connection
Timeout”. Default setting: OFF

SYSTem:COMMunicate:LAN:MAC? Queries the MAC of the selected Ethernet interface,
when physically present.

SYSTem:COMMunicate:LAN:SMASk[?] <SRD> Queries or sets the subnet mask of the selected
Ethernet interface. Format is the same as with the IP.

SYSTem:COMMunicate:LAN:TIMeout[?] {0|5–65535} Defines a socket connection timeout for the selected 
Ethernet interface. Also see “3.6. Connection Timeout”.
Setting this to 0 disables the timeout. Default setting: 5
seconds

SYSTem:COMMunicate:LAN:INDex {1|2}
SYSTem:COMMunicate:LAN:INDex?

Temporary switch between internal port (2) and the
additional port (1, default after power-up).

Page 61mPower DC Programming Guide (Rev A)

5.15 Function generator commands
Available on 310/320 Series units.

Sequence data or table data, which can be written via SCPI commands, is not stored in the system.

The function generator is a complex part of the whole control options of the system. It can be remotely configured and 
controlled by a set of SCPI commands. When operating the function manager on the control panel of the system, it
requires a certain procedure of setup before getting to the actual starting point. The single commands cannot enforce
that procedure, so it’s up to the user to use them in the correct sequence.

1) Select the type of generator

You need to configure the function generator at least once after the system has been powered. The first step is to select 
the type of function generator, causing further steps to depend on your selection. There are two types available: XY and
arbitrary. The XY function generator is only a memory for a table with 4096 values which represent 0-125% of the rated
voltage or current of the system, while the arbitrary generator is used for other functions like sine wave, square wave etc.

2) Configure the function generator (part 1)

As a second step, the arbitrary generator requires to first select to which DC input/output value the function is assigned, 
voltage (U) or current (I). After that you define the number of sequences to run. This does not happen automatically when 
filling a certain number of sequences with data.

If you are going to use the XY generator, the next step would be to select what sort of XY curve it shall run. Depending on
that selection, values you will write to the table memory are interpreted and checked for plausibility.

3) Configure the function generator (part 2)

The last step is to fill the function generator with data. With the arbitrary generator this is done by setting up X out of 99 
possible sequences. The number of effective sequences to run is variable, but at least 1.

The XY generator is filled with 1–4096 values.

XY data and sequence data require to be submitted by a dedicated command which requires to wait
some time before proceeding. We recommend to wait at least 2 seconds after submitting the data
before sending the next command.

4) Use the function generator

After this, the function generator is completely configured and can be started.

Switching to a different function generator mode requires to first leave the function generator by 
sending [SOURce:]FUNCtion:GENerator:SELect OFF. Only after the system will allow to select
another mode. Previously loaded table or sequence data will be erased when leaving function gener-
ator mode.

Page 62mPower DC Programming Guide (Rev A)

5.15.1 XY type: Mode selection

Command Description

[SOURce:]FUNCtion:GENerator:SELect
{UI|IU|PV|NONE}
[SOURce:]FUNCtion:GENerator:SELect?

Selects the run mode of XY function generator:
UI = UI curve and FC curve
IU = IU curve
PV = Standard PV curve
(for the extended EN 50530 PV curve commands
refer to section 5.11)
NONE = Exit function generator

5.15.2 XY type: Load table data

The XY generator is based on a table with up to 4096 values. Also refer to the operating manual of your unit for further
details about the XY function generator.

Before actually going to fill the table with data it’s required to select what kind of table is going to run, so the system can 
interpret and check for plausibility as soon as table data is received.

Command Description

[SOURce:]FUNCtion:GENerator:XY:LEVel {0–4095} 1. Select one out of 4096 table entries for writing
or returns the currently selected entry number.

[SOURce:]FUNCtion:GENerator:XY:DATA <NRf>
[SOURce:]FUNCtion:GENerator:XY:DATA?

2. Writes a value, for example a voltage value, to
the previously with :LEVel selected table entry or
returns the value.

[SOURce:]FUNCtion:GENerator:XY:SUBmit 3. Submit the data which has been written so far.
Can be any number out of the max. 4096 entries.
The rest would then be 0. After this the function
can be started

5.15.3 XY type: Control

After the configuration of the XY generator and after all necessary table data has been loaded it can be started by simply 
switching the DC output of the system on. The function will continue to run, and stops only due to system alarms, or user
abort (switching DC output off).

Page 63mPower DC Programming Guide (Rev A)

5.15.4 Arbitrary type: Mode and configuration

Command Description

[SOURce:]FUNCtion:GENerator:SELect
{VOLTAGE|CURRENT|UI|IU|PV|NONE}
[SOURce:]FUNCtion:GENerator:SELect?

Select the type of function generator:
VOLTage = Arbitrary generator for U
CURRent = Arbitrary generator for I
NONE = Exit function generator

[SOURce:]FUNCtion:GENerator:WAVE:STARt {1..99}
[SOURce:]FUNCtion:GENerator:WAVE:STARt?

Defines the start, i.e. first sequence (1–99), or 
queries the last setting. If only one sequence is
used, then it must be :STARt = :END. Sequences
going to be used should also be written with data
before submitting them.

[SOURce:]FUNCtion:GENerator:WAVE:END {1..99}
[SOURce:]FUNCtion:GENerator:WAVE:END?

Defines the end, i.e. last sequence (1–99) or 
queries the last setting. If only one sequence is
used, then it must be :STARt = :END.

[SOURce:]FUNCtion:GENerator:WAVE:NUMber {0..999}
[SOURce:]FUNCtion:GENerator:WAVE:NUMber?

Defines, how often the sequence block from  :STARt 
to :END is cycled through, or queries the last setting.
0 = infinite cycles
1–999 = number of cycles

5.15.5 Arbitrary type: Load sequence data

Sequence data should only be sent to the system after it was switched to function generator mode, which also sets the
assignment of the arbitrary generator to U or I.

A function can consist of 1 to 99 sequences, so one sequence is either a complete function or just a part of it. When
started, the function generator will execute the sequences from start sequence to end sequence, as defined by the user. 
With every sequence being variable, the resulting function can be quite complex. The sequence data is loaded into the
system with three commands and in a specific order like this:

Command Description

[SOURce:]FUNCtion:GENerator:WAVE:LEVel {1–99}
[SOURce:]FUNCtion:GENerator:WAVE:LEVel?

1. Selects a sequence (similar to HMI access) to
write, or queries the currently selected sequence
number

[SOURce:]FUNCtion:GENerator:WAVE:INDex {0–7}
[SOURce:]FUNCtion:GENerator:WAVE:INDex?

2. For the selected sequence, a set of parameters
can be configured. This command selects the 
parameter between 0 and 7 with value INDex.
The next command (:DATA), is then used to write a
value. The indexes are explained below. Can also
be used to query the current index.

[SOURce:]FUNCtion:GENerator:WAVE:DATA <NRf>
[SOURce:]FUNCtion:GENerator:WAVE:DATA?

3. This will write a value, for example a frequency,
to the previously selected parameter, as part of
the sequence. Can also be used to query the last
value.

[SOURce:]FUNCtion:GENerator:WAVE:SUBmit 4. Submits all data. Without sending this
command, the FG can be started, but will run with
all values being zero

Page 64mPower DC Programming Guide (Rev A)

The AC and DC start and end values have a dependency on each other. Rule of thumb: use of the AC
part requires to set DC values first, otherwise the AC values are not accepted by the system and an 
error is put into the SCPI error buffer. The DC values (start, end) must not be smaller than the related
AC values (start, end).
It can be useful to read back a value that was just written to the system, in order to verify whether it
has been accepted or not. Alternatively, you may read the error queue.

When adjusting parameters for the arbitrary function generator manually on the system’s control panel, they are limited
to each so the resulting signal will work as expected. But here, in remote control, there will be no plausibility check and so
it’s up to the user to write correct values.

For example, index 0 is connected to index 5, as the DC value is the base line of the AC amplitude. It means, if you, for
instance, want to achieve a sine wave with 5 A amplitude on the DC input current of an electronic load, the base line
of the resulting sine wave has to be at minimum 5 A, else the negative wave will be clipped at 0. Indexes 5 and 6 are
adjustable DC offsets which move the AC wave’s base line on the Y axis. So the values in indexes 5 and 6 should at least
be as high as index 0 or 1 (whichever is bigger), but they can also be higher. See figures below.

In relation to the adjustments for a function as they can be done on the system’s front panel, following indexes are
selectable and readable/writable with sub command :DATA.

Index Parameter Data type Unit Value range Note

0 Start value (amplitude) Float A, V 0–Nominal value (U or I) For AC part only
1 End value (amplitude) Float A, V 0–Nominal value (U or I) For AC part only
2 Start frequency in Hz Integer Hz 0–10000 For AC part only
3 End frequency in Hz Integer Hz 0–10000 For AC part only
4 Start angle in ° Integer — 0–359 For AC part only
5 Start level (offset) Float A, V 0–Nominal value (U or I) For AC and DC part
6 End level (offset) Float A, V 0–Nominal value (U or I) For AC and DC part
7 Sequence time Float s 0.0001–36000

In case start and end value (indexes 0+1 and indexes 5+6) are not equal, the system expects a cer-
tain minimum change of ±0.058%/s of ±9.3 Hz/s for the start and end frequency (indexes 2+3) over 
the sequence time. Therefore, it is not possible to let the input current rise by 1 A over 1 h, because
this exceeds the internal set value resolution.
Another example: with the sequence time being set to 2 s, a start frequency of 1 Hz and end fre-
quency of 10 Hz would not be accepted, because the difference is only 9 Hz/s, but start frequency of 
30 Hz and end frequency of 5 Hz would.

Page 65mPower DC Programming Guide (Rev A)

Parameter assignment illustrated by an example curve:
St

ar
t (

D
C)

t

U,I

Start (AC) End (AC)

Seq.time
En

d
(D

C
)

St
ar

t (
D

C)

t

U,I

Start (AC) End (AC)

Seq.time
En

d
(D

C
)

respectively

In
de

x
5

t

U,I

Index 0 Index 1

5.15.6 Arbitrary type: Control

Contrary to the XY generator where the curve is immediately active when switching on the DC output, the arbitrary
generator requires run control by command (below). The run cannot be paused. This means, once the function is stopped,
no matter by what reason, the next start will run from the beginning, the first sequence in use.

Command Description

[SOURce:]FUNCtion:GENerator:WAVE:STATe {RUN|STOP}
[SOURce:]FUNCtion:GENerator:WAVE:STATe?

Starts/stops the arbitrary function generator 
or queries the STATe

Page 66mPower DC Programming Guide (Rev A)

5.15.7 Special function: Simple PV (photovoltaics)

For the extended PV function EN 50530 see “5.16. Extended PV simulation commands”.

The photovoltaics function (PV), available in the 310/320 Series, is based on the XY function generator. When 
programming a PV using the control panel of the 310 Series, you only have to set up 4 parameters, and the system
calculates the table. However, in remote control mode, it’s necessary to load a complete, precalculated table with 4096
values into the system (using scripted SCPI commands).

There are a few options to get the table data calculated and entered:

1. Use the control panel, enter four PV simulation parameters, then let the system calculate and load the table.

2. Use external tools to create a CSV file. Load that file using a thumb drive into the system from the control panel.

3. Create a custom software script using SCPI and directly enter the PV table using remote control.

Regardless of which method is used, once a table is loaded in the system, the control panel can be used to save the
table to a thumb drive in th front USB port. (If you’re using custom remote control scripting, saving the table to the thumb
drive isn’t necessary, as you would just reload the table by remote control. Still, it might be useful for archiving and using
manually later.)

Assuming that the system is already in remote control, and the XY table for the PV function is already calculated and ready
to be loaded, following procedure:

5.15.7.1 Loading data for the simple PV function

No. Command Description

1 FUNC:GEN:SEL PV Select the PV function for the XY generator. By sending this command
the system will switch to function generator mode

2 FUNC:GEN:XY:LEVEL 0 Subsequently write all XY table values for the PV curve into the system

3 FUNC:GEN:XY:DATA 150
...
8192 FUNC:GEN:XY:LEVEL 4095
8193 FUNC:GEN:XY:DATA 0
8194 FUNC:GEN:XY:SUB Submit the written data

5.15.7.2 Irradiation

During function run, the irradiation value which simulates different light situations, can be adjusted. The irradiation
impacts the short-circuit current (Isc) as a factor.

Command Description

[SOURce:]IRRadiation <NR1>
[SOURce:]IRRadiation?

Adjust or queries the irradiation value during the solar panel simulation in a
range of {0–100} percent, which affects the DC current and shifts the MPP
on the Y axis

Page 67mPower DC Programming Guide (Rev A)

5.15.7.3 Setting limits

After submitting all data, it’s necessary to wait some time (~1 s) before starting the simulation. Optionally and if not
already done, set additional global limits like voltage and power, either to maximum or any other value that does not
interfere the simulation. The voltage here should be set to the open circuit voltage (Uoc), alternatively to maximum:

No. Command Description

8195 VOLT MAX Set voltage to max, independent from the model

8196 POW MAX Set power to max, independent from the model

After all is set, you can run the function and control the simulation and irradiation. The irradiation then acts as a factor
that is multiplied to the current value that is read from the table, so changing this value moves the power point vertically
on the Y axis. For an illustration of the PV curve, refer to your unit’s manual.

5.15.7.4 Controlling the system during the PV function run

No. Command Description

8197 OUTP ON Switch the DC output of your system on to make the function start

8198 IRR 85 Set irradiation to 85% (example) or any other value between 0 and 100

8199 OUTP OFF Switch the DC output of your system off to make the function stop

8200 FUNC:GEN:SEL NONE Parameter NONE selects no function generator type and leaves the
function generator mode

5.15.8 Special function: FC (fuel cell)

The fuel cell function (FC) is based on the XY function generator, and is available in the 310 and 320 Series. In remote
control mode, it’s only possible to load a complete, precalculated table with 4096 values into the system. A fuel cell curve
is essentially a voltage-current (UI) curve—so, using the control panel you would select XY Table, then UI Table. Using SCPI 
command you would select UI mode. See “5.15.1. XY type: Mode selection” for the SCPI commands.

When programming a FC function using the control panel of the 310 Series, you only have to set up 4 parameters, and the
system calculates the table. However, in remote control mode, it’s necessary to load a complete, precalculated table with
4096 values into the system (using scripted SCPI commands).

There are a few options to get the table data calculated and entered:

1. Use the control panel, enter four PV simulation parameters, then let the system calculate and load the table.

2. Use external tools to create a CSV file. Load that file using a thumb drive into the system from the control panel.

3. Create a custom software script using SCPI and directly enter the PV table using remote control.

Regardless of which method is used, once a table is loaded in the system, the control panel can be used to save the
table to a thumb drive in th front USB port. (If you’re using custom remote control scripting, saving the table to the thumb
drive isn’t necessary, as you would just reload the table by remote control. Still, it might be useful for archiving and using
manually later.)

Use the same command set as listed for “5.15.7.1. Loading data for the simple PV function”

Page 68mPower DC Programming Guide (Rev A)

5.16 Extended PV simulation commands
Available in the 310/320 Series.

5.16.1 General configuration

Command Description

FUNCtion:PHOTovoltaics:MODe
{OFF|ET|UI|DAYET|DAYUI}
FUNCtion:PHOTovoltaics:MODe?

General mode selection for the PV simulation
OFF = simulation mode off (default)
ET = Continuous mode, temperature and irradiation can be
varied during simulation
UI = Continuous mode, voltage and current of the MPP can
be varied during simulation
DAYET = Day trend mode, no values can be varied, the data
set consists of an index, a temperature value, an irradiation
value and a dwell time
DAYUI = Day trend mode, no values can be varied, the data
set consists of an index, MPP voltage and current values and
a dwell time

FUNCtion:PHOTovoltaics:IMODe {MPP|ULIK}
FUNCtion:PHOTovoltaics:IMODe?

Input mode (applies to all modes selectable with :MODe
command, also see matrix and examples in 5.18.2)
MPP = The base values to calculate the PV curve from are
entered as Umpp and Impp. These values are adjustable
simulation mode UI (default)
ULIK = The base values to calculate the PV curve from are
entered as UOC (open circuit voltage) and ISC (short-circuit
current). These values are adjustable in simulation mode ET

5.16.2 Day trend mode configuration

The below listed commands can only be used if any of the day trend modes DAYET or DAYUI (see above) has been set
before and will else return an error.

It’s recommended to clear the old day data with :DAY CLEAR command before loading a new set,
especially if the new set is shorter.

Commands Description

FUNCtion:PHOTovoltaics:DAY:INTerpolate {ON|OFF}
FUNCtion:PHOTovoltaics:DAY:INTerpolate?

Only for modes DAYET and DAYUI:
ON = Interpolation on
OFF = Interpolation off (default)

FUNCtion:PHOTovoltaics:DAY:MODe {READ|WRITE}
FUNCtion:PHOTovoltaics:DAY:MODe?

Only for modes DAYET and DAYUI:
Day trend mode data access type
READ = Read only (default)
WRITE = Write only

FUNCtion:PHOTovoltaics:DAY {CLEar} Only for modes DAYET and DAYUI:
Clear all data

Page 69mPower DC Programming Guide (Rev A)

Commands Description

FUNCtion:PHOTovoltaics:DAY:INDex {1-100000}
FUNCtion:PHOTovoltaics:DAY:INDex?

Only for modes DAYET and DAYUI:
Select the data index before re-reading day
trend data. For writing day trend data, this
index values is ignored. Use the index in
FUNC:PHOT:DAY:DATA command instead.

FUNCtion:PHOTovoltaics:DAY:DATA
 {<NR1>, <NRf>, <NRf>, <NR1>}
FUNCtion:PHOTovoltaics:DAY:DATA?

Only for modes DAYET and DAYUI:
Write one set of day trend data (4 values) or
read them back from it, which requires prior
index selection. Depending on the selected day
trend mode, different data is returned upon
read or must be provided when writing.
Mode DAYET:
1. value = index, range: 1- 100000
2. value = irradiation in W/m², range: 0-1500
3. value = temperature in °C, range: -40...+80
4. value = Dwell time of index in ms, range:
500–1800000 (^=0,5s...0,5h)
Mode DAYUI:
1. value = index, range: 1-100000
2. value = Umpp in V, range: 0...rated voltage
3. value = Impp in A, range: 0...rated current
4. value = Dwell time of index in ms, range:
500–1800000 (^=0,5s...0,5h)

FUNCtion:PHOTovoltaics:TECHnology {MAN|CSI|THIN}
FUNCtion:PHOTovoltaics:TECHnology?

Panel technology preselection. Determines
if some simulation parameters are fixed or 
accessible
MAN = Manual mode (all parameters
unlocked)
CSI = cSi technology panel (default)
THIN = thin film technology panel

5.16.3 Data recording

The system can record data while the PV simulation is running in any mode. It records up to 576,000 data sets with
6 values each (actual values of U, I, P and MPP values U, I, P). The recording can be started with the simulation or
while it runs. Once the internal memory is filled, it overwrites from the beginning and the number of recorded data sets 
(:REC:NUM?) is reset to 0 . There is one new data set recorded every 100 ms, so that it covers a total time of exactly 16 
hours.

The recording is either stopped at the end of the simulation or on purpose by the user. After the stop, the recorded data
can be read set by set. In case they are need to be saved, they should be read as long as the unit is powered, because the
internal memory data is not stored.

Command Description

FUNCtion:PHOTovoltaics:RECord:ACTive
{ENABle|DISable}
FUNCtion:PHOTovoltaics:RECord:ACTive?

Data recording
ENABle = activated
DISable = deactivated (default)

FUNCtion:PHOTovoltaics:RECord {CLEar} Clear recorded data

Page 70mPower DC Programming Guide (Rev A)

Command Description

FUNCtion:PHOTovoltaics:RECord:NUMBer? Number of already recorded data sets (1-576000)

FUNCtion:PHOTovoltaics:RECord:INDex {1-576000}
FUNCtion:PHOTovoltaics:RECord:INDex?

Set or read the index number prior to read a data
set with :DATa? command

FUNCtion:PHOTovoltaics:RECord:DATa? Read data set X from the previously selected
index. The system will then return following values
separated by commas, representing a snapshot
from a certain time:
1. value = Index number
2. value = Actual voltage on the DC output
3. value = Actual current on the DC output
4. value = Actual power on the DC output
5. value = Umpp (voltage in the MPP)
6. value = Impp (current in the MPP)
7. value = Pmpp (power in the MPP)

After selecting the index with FUNC:PHOT:REC:IND, prior to reading the data set, it requires some
time (<5 ms) to pass before the system can return the true data of the index from an internal buffer.
Being too early with the request command will cause the system to write an error into the error
queue. After data reception the correct data can be verified by comparing the index number in the 
data set with the index you selected with FUNC:PHOT:REC:IND.

After simulation start the system will calculate the first PV curve. This takes about 500 ms. But the 
first data set is already recorded 100 ms after simulation start, so the first 3-4 data set are errone-
ous. This won't be the case if the recording is started at least 500 ms after the simulation start.

5.16.4 Status commands

Status commands and those which read result values from the simulation can be used at any time, but it’s recommend to
carefully chose the moment and order of use.

Command Description

FUNCtion:PHOTovoltaics:MPP:VOLTage? Voltage in the MPP, in V. The MPP results from the PV simulation
curve, which is calculated by the given simulation settings. The
voltage can be between 0 and the rated system voltage.

FUNCtion:PHOTovoltaics:MPP:CURRent? Current in the MPP, in A. Can be between 0 and rated current.

FUNCtion:PHOTovoltaics:MPP:POWer? Power in the MPP, in A. Can be between 0 and rated power.

FUNCtion:PHOTovoltaics:STATe? PV simulation status
STOP = Simulation has stopped normally, either due to user action
or end of day trend
RUN = Simulation running
ERROR MODE = Simulation didn't start due to and error during PC
curve calculation in simulation modes ET or UI
ERROR DAY = Simulation didn't due to and error during PC curve
calculation in simulation modes DAYET or DAYUI
ERROR ALARM = Simulation has stopped due to a system alarm
ERROR INTERPOLATION = Simulation not started due to a wrong
dwell time value in day trend data index 1

Page 71mPower DC Programming Guide (Rev A)

Command Description

FUNCtion:PHOTovoltaics:DAY:NUMBer? Number of accepted day trend indexes. When transferring day
trend data to the system, this counter counts up every time an
index is successfully transferred and accepted. Can ve used to
verify written data.

FUNCtion:PHOTovoltaics:OCVoltage? Open circuit voltage of the simulated solar panel, calculated with
a formula according to the standard. The values is affected by the
selected simulation mode, the standard panel parameters (see
below) and the calculation factors (also see below).

FUNCtion:PHOTovoltaics:SCCurrent? Short-circuit current of the simulated solar panel, calculated with
a formula according to the standard. The values is affected by the
selected simulation mode, the standard panel parameters (see
below) and the calculation factors (also see below).

5.16.5 Parameter commands

The commands listed below are used to set or read all the values required for the different PV simulation modes and
the PV curve calculation. Not all commands can be written. When trying to write values it’s important what simulation
mode (ET, UI, DAYET, DAYUI) and what input mode (MPP, ULIK) is currently set. The matrix below indicates what command
are supported in what mode. A third setting, the technology (MAN, CSI, THIN) also determines if a specific parameter is 
locked from writing, but instead is internally setup with a value according to the DIN EN 50530 standard. Reading the
parameters is possible anytime and in every mode.

Command
Writable in modes:

M
PP

UL
IK

M
AN

CS
I

TH
IN

FUNCtion:PHOTovoltaics:FACTor:FFU <NRf>
FUNCtion:PHOTovoltaics:FACTor:FFU?
Fill factor for voltage (FFU). Only writable in technology selection MAN. Has impact on the PV
curve calculation with formula according to standard. Range: >0–1

Y Y Y ─ ─

FUNCtion:PHOTovoltaics:FACTor:FFI <NRf>
FUNCtion:PHOTovoltaics:FACTor:FFI?
Fill factor for current (FFI). Only writable in technology selection MAN. Has impact on the PV
curve calculation with formula according to standard. Range: >0–1

Y Y Y ─ ─

FUNCtion:PHOTovoltaics:FACTor:ALPHa <NRf>
FUNCtion:PHOTovoltaics:FACTor:ALPHa?
Temperature coefficient α (in 1/°C) for the short-circuit current. Only writable in technology 
selection MAN. Has impact on the PV curve calculation with formula according to standard.
Range: >0–1

Y Y Y ─ ─

FUNCtion:PHOTovoltaics:FACTor:BETA <NRf>
FUNCtion:PHOTovoltaics:FACTor:BETA?
Temperature coefficient β (in 1/°C) for the open circuit voltage. Only writable in technology 
selection MAN. Has impact on the PV curve calculation with formula according to standard.
Range: -1...<0

Y Y Y ─ ─

FUNCtion:PHOTovoltaics:FACTor:CU <NRf>
FUNCtion:PHOTovoltaics:FACTor:CU?
Scaling factor CU for the open circuit voltage. Only writable in technology selection MAN. Has
impact on the PV curve calculation with formula according to standard. Range: >0–1

Y Y Y ─ ─

Page 72mPower DC Programming Guide (Rev A)

Command
Writable in modes:

M
PP

UL
IK

M
AN

CS
I

TH
IN

FUNCtion:PHOTovoltaics:FACTor:CR <NRf>
FUNCtion:PHOTovoltaics:FACTor:CR?
Scaling factor CR in m²/W or the open circuit voltage. Only writable in technology selection MAN. 
Has impact on the PV curve calculation with formula according to standard. Range: >0–1

Y Y Y ─ ─

FUNCtion:PHOTovoltaics:FACTor:CG <NRf>
FUNCtion:PHOTovoltaics:FACTor:CG?
Scaling factor CG in W/m² for the open circuit voltage. Only writable in technology selection 
MAN. Has impact on the PV curve calculation with formula according to standard. Range: >0–1

Y Y Y ─ ─

FUNCtion:PHOTovoltaics:STANdard:OCVoltage <NRf>
FUNCtion:PHOTovoltaics:STANdard:OCVoltage?
UOC (open circuit voltage) of the simulated solar panel in V. Range: 0 - rated voltage

─ Y Y Y Y

FUNCtion:PHOTovoltaics:STANdard:SCCurrent <NRf>
FUNCtion:PHOTovoltaics:STANdard:SCCurrent?
ISC (short-circuit current) of the simulated solar panel in A. Range: 0 - rated current

─ Y Y Y Y

FUNCtion:PHOTovoltaics:STANdard:MPP:VOLTage <NRf>
FUNCtion:PHOTovoltaics:STANdard:MPP:VOLTage?
Voltage in the MPP of the simulated solar panel, in V. Range: 0 - rated voltage

Y ─ Y Y Y

FUNCtion:PHOTovoltaics:STANdard:MPP:CURRent <NRf>
FUNCtion:PHOTovoltaics:STANdard:MPP:CURRent?
Current in the MPP of the simulated solar panel, in A. Range: 0 - rated current

Y ─ Y Y Y

5.16.6 Control commands

These commands are to control the PV simulation, usually after the successful configuration. In some modes, one or two 
parameters are adjustable while the simulation is running. Any change of parameter requires to calculate the PV curve
again, overwriting the former curve. Depending on what point on the curve the simulation currently is , the point will shift
after a certain calculation and response time.

Command Description

FUNCtion:PHOTovoltaics:STATe {RUN|STOP}
FUNCtion:PHOTovoltaics:STATe?

Start/stop simulation
RUN = Triggers PV curve calculation and succeeding
simulation start, if there is no error occurring. If data
recording is activated, it will also start
STOP = Simulation and possibly running data recording
are stopped

FUNCtion:PHOTovoltaics:TEMPerature <NR1>
FUNCtion:PHOTovoltaics:TEMPerature?

Only available in mode ET:
Solar module temperature in °C. 
Range: -40...+80

FUNCtion:PHOTovoltaics:IRRaditation <NR1>
FUNCtion:PHOTovoltaics:IRRaditation?

Only available in mode ET:
Irradiation in W/m². 
Range: 0-1500

Page 73mPower DC Programming Guide (Rev A)

5.16.7 Error situations

An error situation occurs when the configured simulation can't be started or it has started already and was running for a 
while, but then unexpectedly stopped. Command FUNCtion:PHOTovoltaics:STATe? (see section 5.16.4) can help in
both cases to identify the cause of the error.

The following generally applies:

•	Once stopped for any reason, the simulation cannot be continued.
•	Data from the data recording feature can be read during the simulation or after the stop, as long as the system remains

powered.
•	All configuration parameters are not stored and are reset when power-cycling the system.

Page 74mPower DC Programming Guide (Rev A)

5.17 Alarm management commands
In remote control operation it’s important to manage alarms correctly. This can be done the same way as in manual
control. When using the SCPI command language, system alarms are indicated through a status register which can be
polled. Polling for errors should be performance after making changes to settings. Furthermore, most alarms have to be
acknowledged.

5.17.1 Reading system alarms

Reading system alarms should happen in certain intervals, by querying the Questionable status register by either the
subregister CONDITION or EVENT. The commands STAT:QUES:COND?, STAT:QUES?, or STAT:QUES:EVEN? return a value
that represents certain bits (see “5.5 Status registers” on page 42), indicating various conditions. When a bit is set, it
means a certain alarm is present. Refer to the system’s operating manual for details about system alarms.

5.17.2 Acknowledging system alarms

In order to make the user take notice of system alarms, they have to be acknowledged after they occurred and vanished
again. This will delete those alarms from the status register and should be only be done after they have been recorded. To
delete/acknowledge an alarm, the command SYST:ERR? resp. SYST:ERR:ALL? is used, which also serves to query other
errors.

In case one or multiple alarms are still present, they won’t be cleared from the register.

There is one exception in handling, the OT (overtemperature) error. This doesn’t require extra acknowledgement and thus
won’t be indicated anymore in CONDITION once it’s gone.

5.17.3 Alarm counters

These counters count alarm occurrences since the last time the system was powered. They can be read by command
anytime, are not stored when the system is switched off and are purged by reading.

Command Description

SYSTem:ALARm:COUNt:OVOLtage? Counts overvoltage alarms (OVP, adjustable threshold)

SYSTem:ALARm:COUNt:OTEMperature? Counts overtemperature alarms (OT, not adjustable)

SYSTem:ALARm:COUNt:OPOWer? Counts overpower alarms (OPP, adjustable threshold)

SYSTem:ALARm:COUNt:OCURrent? Counts overcurrent alarms (OCP, adjustable threshold)

SYSTem:ALARm:COUNt:PFAil? Counts power fail alarms (PF, not adjustable)

5.17.4 Example

You are running the system in remote control and poll the alarm status with STAT:QUES:COND? at a certain interval, and 
you always receive value 3072. This is the sum of the bit values of bits 10 (remote) and 11 (output on). It tells you that
remote control is active and the DC output is switched on. Then a system alarm occurs caused by the unit overheating.
When reading the register the next time, bit 3 should indicate the OT alarm for you to take notice. Additionally, the DC
output might be indicated as switched off. Thus the returned value could be 1032 or 3080.

Page 75mPower DC Programming Guide (Rev A)

5.18 Example applications

5.18.1 Configure and control master-slave with SCPI

Available on 310 and 320 Series.

In a master-slave (MS) setup, usually only the master unit is remotely controlled, while the slaves are usually not
connected to the PC, except for when being configured remotely as a slave. It’s therefore recommended to configure the 
MS system on the control panels of the units, and only put the master into remote control via software. Even if you would
configure all units manually on the control panel, the remote control software could later read the status of the MS init 
from the master. The initialization of the MS system is done automatically every time the master is powered, but can be
triggered and repeated by command.

Let’s assume for an example configuration that we have five power supplies (80 V, 510 A, 15 kW) in parallel. The master 
has to display itself as an 80V, 2550 A , 75 kW and 1 Ω unit after successful configuration and initialization. These values 
are also the temporary new ratings of the master-slave system. The same way as with manual control, the Limits and Set
Values can be adjusted in 0–102% of the rated value, while protection values have range of 0–110%.

 ►Part 1a: Configure the master

1. Activate remote control: SYST:LOCK ON

2. Activate master-slave mode: SYST:MS:ENABLE ON

3. Define the unit as master: SYST:MS:LINK MASTER

 ►Part 1b: Configure the slave(s), if they’re connected to the controlling unit (PC, PLC etc.)

4. Activate remote control: SYST:LOCK ON

5. Activate master-slave mode: SYST:MS:ENABLE ON

6. Define the unit as slave: SYST:MS:LINK SLAVE

If there is more than one slave, repeat these steps for each slave with their own addresses.

 ►Part 2: Initialize the MS system

7. Ensure remote contol is activated: SYST:LOCK ON

8. Trigger initialization, then wait a few seconds: SYST:MS:INIT

 ►Part 3: Additional optional steps

9. Query the initialization status from the master, in order to analyse it: SYST:MS:COND?

10. Query the number of units Initialized for the MS system (should be 5 with this example): SYST:MS:UNIT?

11. Query the nominal current of the MS system: SYST:NOM:CURR?

12. Query the nominal power of the MS system: SYST:NOM:POW?

13. Query the maximum resistance of the MS system: SYST:NOM:RES:MAX?

14. Query the minimum resistance of the MS system: SYST:NOM:RES:MIN?

15. Configure protection values, for example OCP: CURR:PROT 400

16. Configure events, for example, 

16.1. set OCD to 2100 A: SYST:CONF:OCD 2100

16.2. then define the alarm type for OCD to "warning": SYST:CONF:OCD:ACT WARNING

Page 76mPower DC Programming Guide (Rev A)

The adjustment limits (Limits) require extra treatment, because they are tied to the set values. Means, with the set values
being reset to defaults during the MS init, for example the set value of current would be at maximum and thus the related
adjustment limit IMax can't be set lower than this without prior changing the set value.

17. Narrow the adjustable range of values, for example limit the max. current set value to 2200 A

17.3. First, set the current value down to anything lower than the desired limit, like the minimum: CURR MIN

17.4. Second, set the adjustment limit to the value translated for the master unit: CURR:LIM:HIGH 2200

With these settings applied, the current should be at 0, because the lower adjust limit has not yet been changed. The
current will me monitored for the threshold of 2100 A by the event system and since it’s adjustable up to 2200 A, the true
current might exceed the threshold and cause an OCD event, which would only generate a warning on screen, but not
switch off the DC output.

18. To start working with your MS system, switch the DC output on: OUTP ON

The system will remain configured and keep the settings after power-cycling it. The master unit has to initialize the MS and 
the slaves at least one time after power-up. The status of the first automatic initialization can be read from the master by 
custom software and depending on the result, the software could trigger further steps like the ones above.

5.18.2 Programming examples for PV simulation (DIN EN 50530)

Available on 310 and 320 Series.

Additional information about this extended PV function can be found in the Operating Guide of your system. The user
manuals also have information about the connection between simulation mode, input mode, and panel technology.

Important: after the simulation start, the system will calculate the first PV curve table. This takes 
about 500 ms, so the actual simulation begins ~ 500 ms after the start.

Overview (an "x" marks a possible combination):

Options
Simulation mode Input mode ULIK Input mode MPP

ET X X — Example 1
UI X — Example 3
DAY ET X — Example 2 x
DAY UI X — Example 4

Page 77mPower DC Programming Guide (Rev A)

5.18.2.1 Example 1

•	Technology: cSi
•	 Input mode: MPP values
•	Simulation mode: Continuous, with adjustable temperature and irradiation
•	Recording: activated

Configuration

Nr. Command Description Register

1 SYST:LOCK ON Activate remote control 402

2 FUNC:PHOT:MODE ET Activate PV simulation mode ET 12001

3 FUNC:PHOT:TECH CSI Select technology: cSi 12016

4 FUNC:PHOT:IMOD MPP Select input mode: MPP 12017

5 FUNC:PHOT:STAN:MPP:VOLT 20 Set MPP voltage: 20 V 12050

6 FUNC:PHOT:STAN:MPP:CURR 5 Set MPP current: 5 A 12051

7 FUNC:PHOT:REC:ACT ENABLE Activate data recording 12018

8 POW MAX Set global power set value to maximum 502

9 VOLT 30 Set the global voltage limit (should be higher than Uoc) 500

•	The values for the standard test condition (STC), as set in steps 5 and 6, are only used to cal-
culate the first PV curve. The MPP values (:STAN:MPP) are linked to the solar panel specs Uoc
(:STAN:OCV) and Isc (:STAN:SCC) via the factors FFi and FFu. They overwrite each other. This
means that setting :STAN:MPP:VOLT overwrites the value in :STAN:OCV and vice versa.

•	Voltage and current in the MPP are connected via factors FFi and FFu to the open circuit voltage
(Uoc) and the short-circuit current (Isc). Depending on the selected technology, these factors are
not adjustable.

•	The first curve after function start is calculated with the default values T = 25°C and E = 1000 W/
m² (E = from German Einstrahlung meaning Irradiation).

Control (also during simulation run)

Nr. Command Description Register

10 FUNC:PHOT:STAT RUN Start simulation 12000

11 FUNC:PHOT:TEMP 40 Adjust temperature value: 40 °C 12052

12 FUNC:PHOT:IRR 800 Adjust irradiation: 800 W/m² 12053

13 FUNC:PHOT:STAT STOP Stop simulation after an arbitrary time 12000

Analysis after simulation end

Nr. Command Description Register

14 FUNC:PHOT:REC:NUMB? Read number (n) of recorded data sets 12020

15 FUNC:PHOT:REC:IND 1 Select first data set (index 1) for reading 12022

16 FUNC:PHOT:REC:DATA? Read data from data set (index) 1 12024

... ... Read further n-1 data sets: ...

Page 78mPower DC Programming Guide (Rev A)

Nr. Command Description Register

x FUNC:PHOT:REC:IND n Select data set n (index n) for reading 12022

y FUNC:PHOT:REC:DATA? Read data from data set (index) n 12024

5.18.2.2 Example 2

•	Technology: Manual
•	 Input mode: Open circuit voltage and short-circuit current
•	Simulation mode: Day trend with adjustable temperature and irradiation
•	 Interpolation: deactivated
•	Data recording: activated

Configuration

Nr. Command Description Register

1 SYST:LOCK ON Activate remote control 402

2 FUNC:PHOT:MODE DAYET Activate PV simulation mode DAY ET 12001

3 FUNC:PHOT:TECH MAN Select technology: Manual (all required parameters must
be defined, here as with commands 4-10)

12016

4 FUNC:PHOT:FACT:FFU 0.8 Fill factor voltage (FFU): 0,8 12034

5 FUNC:PHOT:FACT:FFI 0.78 Fill factor current (FFI): 0,78 12036

6 FUNC:PHOT:FACT:ALPH 0.0003 Temperature coefficient α for ISC: 0,0003 /°C 12038

7 FUNC:PHOT:FACT:BETA -0.003 Temperature coefficient β for UOC: -0,003 /°C 12040

8 FUNC:PHOT:FACT:CU 0.0725 Scaling factor CU for UOC: 0,0725 12042

9 FUNC:PHOT:FACT:CR 0.00022 Scaling factor CR for UOC: 0,00022 m²/W 12044

10 FUNC:PHOT:FACT:CG 0.00315 Scaling factor CG for UOC: 0,00315 W/m² 12046

11 FUNC:PHOT:IMOD ULIK Select input mode: ULIK 12017

12 FUNC:PHOT:STAN:OCV 38 Set open circuit voltage: 38 V 12048

13 FUNC:PHOT:STAN:SCC 7 Set short-circuit current: 7 A 12049

14 FUNC:PHOT:REC:ACT ENABLE Activate data recording 12018

15 FUNC:PHOT:DAY:INT OFF Deactivate interpolation of day trend data 12005

16 POW MAX Set global power set value to maximum 502

17 VOLT 38 Set the global voltage limit (should be ≥Uoc) 500

•	The values for the standard test condition (STC), as set in steps 5 and 6, are only used to calculate
the first PV curve. Every change of parameter that would shift the MPP causes the system to calcu-
late the PV anew.

•	Voltage and current in the MPP are connected via factors FFi and FFu to the open circuit voltage
(Uoc) and the short-circuit current (Isc), which are both given in this example, other than in Example
1. Depending on the selected technology, these factors are not adjustable

Page 79mPower DC Programming Guide (Rev A)

Write day trend data (only possible before the function start)

Nr. Command Description Register

18 FUNC:PHOT:DAY:MODE WRITE Select access mode: write 12006

19 FUNC:PHOT:DAY CLEAR Delete former data (should be executed every time before
loading new data)

12007

20 FUNC:PHOT:DAY:DATA 1, 500,
 20, 1500

Write 1st day trend data set:
Irradiation: 500 W/m²
Temperature: 20°C
Dwell time: 1500 ms

12010

The dwell time is defined to have a minimum of 500 ms. However, when setting 
up the very first day trend data set it’s expected to set 1000 ms or higher for 
this one, because else the function run might fail.

21 FUNC:PHOT:DAY:DATA 2, 800,
 28, 1500

Write 2nd day trend data set:
Irradiation: 800 W/m²
Temperature: 28°C
Dwell time: 1500 ms

12010

... ... Write further data sets, a total of 500 ...
519 FUNC:PHOT:DAY:DATA 500, 1200,

35, 20000
Write 500. day trend data set:
Irradiation: 1200 W/m²
Temperature: 35°C
Dwell time: 20000 ms

12010

Control

Nr. Command Description Register

520 FUNC:PHOT:STAT RUN Start simulation. The simulation will stop automatically
after the time that results from the total of dwell times in
all written data sets

12000

Analysis (after simulation end)

Nr. Command Description Register

521 FUNC:PHOT:REC:NUMB? Read number (n) of recorded data sets. This number
is not related to the number of day trend data sets in
use. This feature records a new data set every 100
ms. Depending on the total simulation time, the record
buffer could fill (max. 16 h record time) and overwrite 
existing data. It may become necessary to calculate the
total simulation time from the day trend data sets and
start reading the recorded data during simulation, then
clearing the buffer and later read the rest of data.

12020

522 FUNC:PHOT:REC:IND 1 Select first data set (index 1) for reading 12022

523 FUNC:PHOT:REC:DATA? Read data from data set (index) 1 12024

... ... Read further n-1 data sets: ...
x FUNC:PHOT:REC:IND n Select data set n (index n) for reading 12022

y FUNC:PHOT:REC:DATA? Read data from data set (index) n 12024

Page 80mPower DC Programming Guide (Rev A)

5.18.2.3 Example 3

•	Technology: thin film
•	 Input mode: MPP values
•	Simulation mode: Continuous, with adjustable MPP (voltage and current)
•	Recording: deactivated

Configuration

Nr. Command Description Register

1 SYST:LOCK ON Activate remote control 402

2 FUNC:PHOT:MODE UI Activate PV simulation mode UI 12001

3 FUNC:PHOT:TECH THIN Select technology: Thin film 12016

4 FUNC:PHOT:IMOD MPP Select input mode: MPP 12017

5 FUNC:PHOT:STAN:MPP:VOLT 45 Set MPP voltage: 45 V 12050

6 FUNC:PHOT:STAN:MPP:CURR 10 Set MPP current: 10 A 12051

7 FUNC:PHOT:REC:ACT DISABLE Deactivate data recording 12018

8 POW MAX Set global power set value to maximum 502

9 VOLT 57 Set the global voltage limit (should be ≥Uoc) 500

Control (also during simulation run)

Nr. Command Description Register

10 FUNC:PHOT:STAT RUN Start simulation 12000

11 FUNC:PHOT:STAN:MPP:VOLT 40 Shift MPP: 40 V 12050

12 FUNC:PHOT:STAN:MPP:CURR 9 Shift MPP: 9 A 12051

13 FUNC:PHOT:STAT STOP Stop simulation after an arbitrary time 12000

5.18.2.4 Example 4

•	Technology: cSi
•	 Input mode: MPP values
•	Simulation mode: Day trend with shiftable MPP (voltage and current)
•	 Interpolation: activated
•	Data recording: deactivated

Configuration

Nr. Command Description Register

1 SYST:LOCK ON Activate remote control 402

2 FUNC:PHOT:MODE DAYUI Activate PV simulation mode DAY UI 12001

3 FUNC:PHOT:TECH CSI Select technology: cSi 12016

4 FUNC:PHOT:IMOD MPP Select input mode: MPP 12017

Page 81mPower DC Programming Guide (Rev A)

Nr. Command Description Register

5 FUNC:PHOT:STAN:MPP:VOLT 36 Set open circuit voltage: 36 V 12050

6 FUNC:PHOT:STAN:MPP:CURR 12 Set short-circuit current: 12 A 12051

7 FUNC:PHOT:REC:ACT DISABLE Deactivate data recording 12018

8 FUNC:PHOT:DAY:INT ON Activate interpolation of day trend data 12005

9 POW MAX Set global power set value to maximum 502

10 VOLT 57 Set the global voltage limit (should be ≥Uoc) 500

Load day trend data (only possible before the function start)

Nr. Command Description Register

11 FUNC:PHOT:DAY:MODE WRITE Select access mode: write 12006

12 FUNC:PHOT:DAY CLEAR Delete former data (should be executed every time before
loading new data)

12007

13 FUNC:PHOT:DAY:DATA 1, 1, 1,
 300000

Write 1st day trend data set:
MPP voltage: 1 V
MPP current: 1 A
Dwell time: 300 seconds -> 5 minutes

12010

14 FUNC:PHOT:DAY:DATA 2, 2, 2,
 500

Write 2nd day trend data set:
MPP voltage: 2 V
MPP current: 2 A

12010

... ... Write further data set, a total of 1000 ...
1012 FUNC:PHOT:DAY:DATA 1000, 30,

 9, 500
Write 1000th day trend data set:
MPP voltage: 30 V
MPP current: 9 A

12010

Due to the dwell time of 5 minutes in the very first day trend data set, all 1000 data sets use the same dwell time, so the 
total simulation time results as 5000 minutes.

Control

Nr. Command Description Register

1013 FUNC:PHOT:STAT RUN Start simulation. The simulation will stop automatically
after the time that results from the total of dwell times in
all written data sets

12000

Page 82mPower DC Programming Guide (Rev A)

6 Profibus & Profinet

6.1 General
Connection to Profibus and Profinet are possible only through the Anybus modules IF-AB-PBUS (Profibus) or IF-AB-PNET 
(Profinet, 1 or 2 ports), and therefore limited to the 310 series of systems.

The Profinet/IO module (1 or 2 ports) can be used to control and monitor a system using a network system, usually 
combined with an integrated PLC and proper software. For Profinet, the software selects the necessary Ethernet port, 
because this port cannot be adjusted on the system. The standard Profinet communication is handled by the field bus 
protocol via special software.

On the system side, the interface module simplifies the necessary configuration. When using Profibus, the user only has to 
set a slave address (0–125), while Profinet’s network settings are usually configured through remote control, often using 
the Siemens Primary Setup Tool (PST) or somethig similar. Optional parameters like tags can be defined in the system’s 
setup menu or via command.

This part of the document covers how to use the ModBus register lists (PDF) with your system in order to access indexes
and slots via acyclic communication. The interface modules present the system as a DP-V1 slave to the network, capable
of cyclic and acyclic data transmission.

6.2 Preparation
For the implementation of a system into Profibus or Profinet, and the enumeration at the master (PLC or similar), a 
fully configured and wired unit is presumed. The next thing you will usually need is a system description file called GSD 
(Generic Station System) for Profibus, or a GSDML for Profinet, which is available as a download from our website. 

This GSD/GSDML file enables building a specific slot configuration for cyclic process data, such as actual values or status. 
Those slots are also used to access other data objects of the system via acyclic read/write. See more below.

6.3 Slot configuration for Profibus
The slot configuration for users of the interface module IF-AB-PBUS is done by loading the GSD/GSE file in the 
configuration dialogue (with Siemens STEP7: HWCONFIG) and by arranging the slots in a specific order:

Slot Slot name Description

1 System status & acyclic slot 1 Cyclic: System status (see register list)
Acyclic: all registers (indexes) assigned to slot 1

2 Act. voltage & acyclic slot 2 Cyclic: Actual voltage of DC input/output
Acyclic: all registers (indexes) assigned to slot 2

3 Act. current & acyclic slot 3 Cyclic: Actual current of DC input/output
Acyclic: all registers (indexes) assigned to slot 3

4 Act. power & acyclic slot 4 Cyclic: Actual power of DC input/output
Acyclic: all registers (indexes) assigned to slot 4

5 Acyclic slot 5 Acyclic: all registers (indexes) assigned to slot 5
...
12 Acyclic slot 12 Acyclic: all registers (indexes) assigned to slot 12

Page 83mPower DC Programming Guide (Rev A)

Example view of the HW CONFIG in Siemens Simatic, with 8 slots:

The address ranges can of course be re-arranged as required. The slots for acyclic access don't need an output address
range, because the input address range already reserves memory space for both directions.

6.4 Slot configuration for Profinet
The GSDML file does not offer automatic slot configuration. When loading the file, the correct version for the Profinet 
interface module in use, 1 port or 2 port, must be selected. After that, the slot placement can be set up like this:

Slot Slot name Description

1 Input 2 words Cyclic: System status (register 505, see register list)
Acyclic: all registers (indexes) assigned to slot 1

2 Input 1 word Cyclic: Actual voltage of DC input/output (register 507, see register list)
Acyclic: all registers (indexes) assigned to slot 2

3 Input 1 word Cyclic: Actual current of DC input/output (register 508, see register list)
Acyclic: all registers (indexes) assigned to slot 3

4 Input 1 word Cyclic: Actual power of DC input/output (register 509, see register list)
Acyclic: all registers (indexes) assigned to slot 4

5 Input 1 word Acyclic: all registers (indexes) assigned to slot 5
...
12 Input 1 word Acyclic: all registers (indexes) assigned to slot 12

Example view of the HW CONFIG in Siemens Simatic, with 8 slots:

The address ranges can of course be re-arranged as required. The slots for acyclic access don't need an output address
range, because the input address range already reserves memory space for both directions.

Page 84mPower DC Programming Guide (Rev A)

6.5 Cyclic communication via Profibus/Profinet
The Profibus / Profinet slave cyclically transfers process data to certain input addresses of the master, as defined by the 
user for Profibus or Profinet during slot configuration. Also see sections “6.3. Slot configuration for Profibus” resp. “6.4.
Slot configuration for Profinet”.

Actual values coming from the system have to be translated to real values according to the formula described in section
“4.2.1. Hex Percent and Decimal Value Conversion”, while any other data are referenced in those register lists which
usually should come along with this document. The slot names are partially connected to corresponding registers in the
lists. For instance, one slot is named “Actual current”, a name which can be found in the register list at position 508. This
is also where the register is enabled for use with Profibus/Profinet use by having a slot/index number assigned.

According to sections 6.3 and 6.4 there are up to 12 slots for acyclic system access, which carry a varying number of
indexes (see register lists). By using appropriate blocks/functions (SFB52, SFB53), the user can acyclically access the IDs 
(slot addresses) and indexes by write and read. The slots for acyclic transfer are only defined to reserve slot addresses 
and memory space, so it doesn't matter that they are only inputs.

Set values, settable status and most other registers are not transferred cyclically for several reasons.
One is the high number ot available registers which cannot be covered by only 16 available slots and
the max. data size per slot.

6.6 Acyclic communication via Profibus/Profinet
Acyclic communication with the target system is done by using slots 1-12, precisely their resulting ID, and indexes, which
are accessed by system function blocks for read or write. The SFBs to use here are usually SFB52 and SFB53 when using
Siemens software. Other PLC control softwares offer similar options.

The SFBs require an ID, an index and a parameter as input. The parameter can be a status or a set value, translated to a
hexadecimal value according to “4.2.1. Hex Percent and Decimal Value Conversion”.

For starters there are example projects (on the included USB stick or as download), one each for Profibus and Profinet, 
which can be opened with Siemens STEP7 and which shall demonstrate the access to the system with preconfigured data 
blocks.

The register list for your system series has two extra columns for Profibus/Profinet use only. These define slot and index 
number for a particular command. The necessary parameter is defined in the register lists respectively, also in “4.2.1. Hex
Percent and Decimal Value Conversion”. Rule of thumb:

•	Registers where no slot/index is given are not supported via Profibus or Profinet

The general procedure to control a system remotely is like this:

1. Activate remote control with the appropriate command (may be denied by the system, see “3.4. Control
Location”)

2. Control and monitor your system remotely, via cyclic (DP-V0) and/or acyclic (DP-V1) access.

3. Deactivate, i.e. leave remote control

If you just want to record data by reading values from the system, activation of remote control is not necessary. You can
send query commands to the system at anytime and the system will respond immediately, if its current situation allows
to respond at all. After querying something from the system, the function block will put out the data returned from the
system to an output buffer for further processing.

The field bus ensures that the command is transmitted to the system, otherwise it will generate an error. However,  it 
can't verify that the system really accepted the command or already has set the desired value. This can only be verified by 
reading the value from the system and comparing. Whether a value has been truly transferred to the system’s DC input/

Page 85mPower DC Programming Guide (Rev A)

output can't be determined definitely.

In order to send a command from with a typical Profibus/Profinet software, following applies in general:

1. Select the desired register from the register list and read its assigned slot/index values.

2. Determine the I/Q address which is assigned to the particular slot in HWCONFIG. The use of ID, index, slot and 
subslot are not just different between Profibus and Profinet, but also between the different PLC systems and 
softwares. The examples below demonstrate the use with Siemens software.

3. Set ID, index and parameter (set value, status or something else) in decimal or hexadecimal form in the SFB
and execute.

4. Process the data returned from the system, if the last message was a query.

6.7 Examples for acyclic access

6.7.1 Activate/deactivate remote control

Remote control is a system state and not the default one. It has to be activated, i.e. requested by the user before the
system can be controlled remotely. Depending the settings and on the state the system is currently in when trying to
switch to remote control, the system can deny the request.

 ►Activating or deactivating remote control of your system via Profibus

1. Use the register list and find the proper command, here: Register 402 - Remote mode.
2. Find the slot and index values for this command in the dedicated columns, here slot 2 and index 1.
3. From the slot configuration read the I/Q address for slot 2 to have the value for parameter "ID", for example 260 

(like in the example configs in 6.3 and 6.4) or DW#16#104
4. The value "Index" from the register list is submitted to the parameter INDEX like this:

Profibus: INDEX = Index = 1
Profinet: INDEX = Slot number * 255 + 1 + Index = 510 + 1 + 1 = 512

5. Use a suitable function block in your automation software, for example SFB53.
6. Define the control value to use for this command, as described in the columns “Data” and “Example”:

0xFF00 = Activate remote control
0x0000 = Deactivate remote control

7. Configure the function block with ID, INDEX and control value and execute the block. If not somehow inhibited by 
the system, it should either switch to remote control or back to manual control.

6.7.2 Send a set value

Any command that sets something in the system, no matter if value or status, requires activated remote control status.
Also see “6.7.1. Activate/deactivate remote control” and “3.4. Control Location”.

Before you send a value, you first need to select which one you want to set and you also might need to translate it, 
because via Profibus/Profinet set values are transferred as percent of the nominal values. Read sections “4.2. Set Value
Resolution” and “4.2.1. Hex Percent and Decimal Value Conversion” for more information.

 ►Setting the DC output current value

1. Use the register list and find the proper command, here: Register 501 - Set current value.
2. Find the slot and index values for this command in the dedicated columns, here slot 2 and index 24.
3. From the slot configuration read the I/Q address for slot 2 to have the value for parameter "ID", for example 260 

(like in the example configs in 6.3 and 6.4) or DW#16#104

Page 86mPower DC Programming Guide (Rev A)

4. The value "Index" from the register list is submitted to the parameter INDEX like this:
Profibus: INDEX = Index = 25
Profinet: INDEX = Slot number * 255 + 1 + Index = 510 + 1 + 24 = 535

5. Use a suitable function block in your automation software, for example SFB53.
6. Define the control value to use for this command, as described in the columns “Data” and “Example”. First, read 

the value range: 0x0000–0xCCCC (decimal: 52428) = Current 0–100%. Second, calculate the set value. For a
model with, for example, 170 A nominal current and a desired current of 10 A, this would be 52428/17 = 3084 --> 
0x0C0C.

7. Put the conrol value 0x0C0C together with ID and INDEX into the function block and execute the block. The system
should instantly set 10 A as current limit. This can be verified in the display of the system where it shows the set 
value of current.

6.7.3 Read something

Reading something from the system is always possible, it means that no remote control is required. Apart from the
cyclically transferred data, any other available information can be read via acyclic transfer.

 ►Reading the actuals values of voltage and current

1. Use the register list and find the proper register. The registers of voltage and current are next to each other, the one 
of voltage is the lower number, thus it will be: Register 507 - Actual voltage

2. Find the slot and index values for this command in the dedicated columns, here slot 2 and index 28
3. From the slot configuration read the I/Q address for slot 2 to have the value for parameter "ID", for example 260 

(like in the example configs in 6.3 and 6.4) or DW#16#104.
4. The value "Index" from the register list is submitted to the parameter INDEX like this:

Profibus: INDEX = Index = 28
Profinet: INDEX = Slot number * 255 + 1 + Index = 510 + 1 + 28 = 539

5. Read the length of bytes from the column “Data length in bytes” to determine how many bytes to read. In this case
there are two registers with length 2 bytes to read, so it’s 4 bytes.

6. Use a suitable function block in your automation software, for example SFB52.
7. Configure the function block with ID, INDEX and data length (4 bytes or 2 words of 16 bit, depending in the way the 

software defines the input). 
8. Execute the function block. The data buffer of the block should return the requested data in form of 4 bytes.

The returned 4 bytes will contain the actual voltage value in the first two bytes which is represented as percent value (for 
translation see “4.2.1. Hex Percent and Decimal Value Conversion”). The actual current value will be in the last two bytes.

By varying the data length to 6 you could also include the actual power value. Alternatively, you can query each actual
value separately. To do this, you need to use the corresponding register number to calculate the INDEX and a data length
of 2.

Page 87mPower DC Programming Guide (Rev A)

6.8 Data interpretation
Data returned from queries, but cyclically transferred data in the first place, have to be interpreted. Let’s use an example 
from a Profibus master simulator where the cyclic data is comfortably displayed. Also see section “4.2.1. Hex Percent and
Decimal Value Conversion”.

The figure shows the transferred data of a configuration with 8 slots. Because 
only slots 1-4 are used for cyclic transfer, the rest remains empty.

Slot 1: System status (connected to register 505). The value 0x000004C0 says
that bits 6, 7 and 10 are set. It means, the system is configured as master (for 
master-slave), the input/output is on and regulation mode is CC.

Slot 2: Actual voltage (connected to register 507). With a 250 V model, for
instance, the value 0x263A translates to 250 V*0x263A/52428=46.7 V.

Slot 3: Actual current (connected to register 508). With a 510 A model, for
instance, the value 0x0C9B translates to 510 A*0xC9B/52428=31.4 A.

Slot 4: Actual power (connected to register 509). For a 5 kW power supply, for
instance, the value 0x0925 translates to 5000 W*0x925/52428=223 W or 0.22 
kW.

Slot 5: not used for cyclic data

Slot 6: not used for cyclic data

Slot 7: not used for cyclic data

Slot 8: not used for cyclic data

Page 88mPower DC Programming Guide (Rev A)

7 CANopen

The available communication objects (ADIs) in an Electronic Data Sheet file (EDS/XDD) are available from from our 
website. This EDS can be integrated in CANopen related software. The EDS indexes are not separately explained, because
their definition and use is identical to the ModBus register list files (see “4.5. Reading Register Lists”). Examples from
the ModBus part of this document can be used, and applied for CANopen as well, but would be reduced to the core data,
because CANopen users are not confronted with checksums and function codes as with ModBus.

The CANopen module IF-AB-CANO does not feature an internal termination resistor. Thus the bus
termination has to be applied by the user according to the CAN bus requirements.

7.1 Preparation
For the communication with the system via CANopen interface IF-AB-CANO, a few things are required:

1. A suitable CAN cable, preferably with switchable termination resistor, which has to be activated always if the
system is at the end of the bus, like when directly connecting the PC to a single unit.

2. EDS/XDD (included with the system on USB stick).

3. CANopen software for the PC (not included, any available software for CANopen should suffice).

4. Documentation about how to use the supported indexes. See sections 1. - 4., 7.2 and 9., as well as the
included register list(s).

7.2 User objects (indexes)
The message format used via CANopen communication is related to ModBus. A specific index is connected to a specific 
ModBus register. The CANopen standard defines that user objects are enumerated from index 0x2001. With ModBus, the 
registers are counted from 0. This means, that index 0x2001 corresponds to register 0, and index 21F5 corresponds to
register 0x01F4 (decimal 500) etc.

The EDS/XDD contains fewer indexes than mPower supports for ModBus registers, but the available indexes still cover 
most functions needed for remote control of an mPower system. Users can edit the EDS/XDD anytime, and add indexes.

Along with this document, there are ModBus register lists. These can also be used to CANopen, as they also define data 
type and value range of the indexes. Examples in other sections of this documents can be applied to CANopen as well.

7.2.1 Translation ADI > Register

The translation of an CANopen index, as listed in the EDS file, to a register address is quite easy due to the fixed offset of  
0x2001. For example, if you pick the index “207A Nominal voltage” from the EDS, it translates like this:

Index number – Offset = register address → 0x207A – 0x2001 = 0x79 (hex) = 121 (dec). According to the register list for 
an mPower 310 Series, this represents the nominal system voltage as a FLOAT value. Since CANopen does not support
the data type FLOAT, the EDS uses REAL32 here. The user just has to translate the 32 bit value according to IEEE 754
specification.

Page 89mPower DC Programming Guide (Rev A)

7.3 Specific examples

7.3.1.1 Switching to remote control

As described in “4.6.9.5. Switch between remote and manual control”, it’s required to switch the system to remote control
before you can control it. In order to do this, you first need to find the proper command in the register list relative to the 
dedicated index in the EDS. In this case, it’s register 402 which is index 0x2193. The register list defines that the value 
0xFF00 has to be sent to switch to remote or value 0x0000 to leave remote control.

7.3.1.2 Setting a set value

After remote control has been accepted by the system, you are allowed to send set values. Those values usually represent
a percent value. From the definition in the register list, 100% of a value translated to the hexadecimal value 0xCCCC and 
0% to 0x0000. There are 52429 possible values between 0% and 100%. It has to be pointed out here, that this is not the
true resolution values like voltage or current actually achieve at the DC output. The effective resolution of output/input 
values is 26214 steps. More details are available in “4.6.9.1. Writing a set value”.

7.4 CANopen to ModBus differences

7.4.1 When using the arbitrary generator

Due to CANopen only being able to transport a maximum of 4 effective user data bytes per message, the 8 values of data
defining a sequence point of the arbitrary generator cannot be transferred at once. Instead, they are sent in 8 separate 
messages. The system checks every single value for plausibility upon reception, but once all sequence points are set
without any error, an additional submit command is needed (index 235F). This will transfer all sequence point data and
load the function into the function generator, and enable start/stop action. Without sending the submit command, the 
function generator would either run with all data being zero or using old data.

The steps to perform, as described in section 4.9.9.1, are the same for CANopen, except for the additional step 3.1:

Step 1:

Select, whether to apply the function to the voltage U (index 2354) or the current I (index 2355). Before making this
selection, the system cannot accept sequence point data, because the data is run through a plausibility check against the
system’s nominal values.

Step 2:

Define start sequence point (index 235C), end sequence point (index 235D) and number of cycles of that sequence  point 
block to repeat (index 861).

Step 3:

Load data for all required sequence points (x out of 99, indexes 2385 - 29A5, 8 values per sequence point in sub indexes).

Step 3.1:

Submit the data by writing 0xFF00 to index 235F (register 862, undocumented for ModBus, because not required there)

Step 4:

Set global voltage limit (index 21F5), if the function is applied to the current. Otherwise, set global current limit (index
21F6), if the function is applied to voltage. Set global power limit (index 21F7) for both modes.

Step 5:

Control the function generator with start/stop (index 2353).

Page 90mPower DC Programming Guide (Rev A)

Step 6:

When finished, leave the function generator by deselecting your former selection of either U (index 2354) or I (index 2355) 
again by writing 0x0000.

7.5 Error codes
Following error codes, as part of the CANopen standard, are supported by the CANopen interface module:

Code Description

0x06020000 Object does not exist in the object dictionary (ModBus register list)
0x06040043 Command not supported
0x06099911 Sub-Index does not exist
0x06010002 Attempt to write a read only object
0x06010002 Attempt to read a write only object
0x06070012 Too much data
0x06070013 Not enough data
0x06090030 Value range of parameter exceeded
0x08000022 Data could not be transferred or stored to the application because of the present system state
0x05040005 Out of memory
0x08000000 General error

Page 91mPower DC Programming Guide (Rev A)

8 CAN

This section is specific to the communication with a system via the CAN Anybus module IF-AB-CAN—and therefore is 
specific to the 310 Series systems. Configuration of the interface itself is done on the control panel (HMI) of the system.

8.1 Preparation
Requirements for communication with the system via CAN module IF-AB-CAN.

1. A suitable CAN cable. It’s not required to have one with integrated bus termination switch and resistor, because
the interface module has an electronically switched resistor for bus termination. In case the cable also has
one, it’s important to take care to activate only one of both, otherwise there can be bus errors.

2. When using Vector™ or similar software which can make use of database files (DBC), a dedicated DBC for the 
particular system model is needed. If not available, it can be created by the user, for example by modifying a
similar one.

3. CAN software for the PC (not included, any available software for CAN should suffice).

4. Documentation about how to use the supported CAN objects. See below and sections 1. - 4., as well as the
register list for the series.

8.2 Introduction
The data format is derived from ModBus RTU. In relation to a database file (DBC) a mux value (Vector terminology) 
represents a specific ModBus register or object/command. Objects in the database are selected by the muxer, and when 
programming the CAN message buffer directly (CAPL), the first two bytes of data in a CAN message define the register 
(object, command) to access. The selection between writing and reading objects is done by the CAN ID.

Each system will be assigned at least three CAN IDs, which are defined via the Base ID in the system’s CAN settings. The 
Base ID is used write to objects (message type: Send_Object), while querying objects (message type: Query_Object) is 
done with Base ID+1 and responses (message type: Read_Object) coming from the system use Base ID+2. Responses 
from the system are expected after a query, but can also be received unexpectedly in case of communication or access
error. When adjusting the Base ID of a system, the other related IDs will shift automatically.

There is another adjustable ID, the Broadcast ID. It’s separate from all others and can be used to address multiple
systems at once by one command when using the same broadcast ID on these system. This ID is for write access (Send_
Object) only. Queries to multiple systems at once with one message are not possible.

Apart from the Base ID and Broadcast ID for acyclic access, some series support further adjustable IDs for cyclic status
data which is sent permanently by the system once activated and after the CAN connection has been established. Refer
to the system manual for setup, particularly the section for the communication settings, and also further below.

Page 92mPower DC Programming Guide (Rev A)

8.3 Message formats

Below explanations are, besides the selection of IDs to switch between write and read actions, also
related to the ModBus functions, as listed in the register lists in columns 2-6.

8.3.1 Normal sending (writing)

Writing to the system always used the base ID or the broadcast ID. It requires defining the first register/object to write to 
in the CAN data, as well as the number of registers to write and a specific number of parameter bytes which can represent 
different data types.

Access: Base ID, broadcast ID

Connected ModBus functions: Write Single Coil (WSC), Write Single Register (WSR)

Bytes 0+1 Byte 2 Bytes 3+4

Register Nr. of regs to write Data

0–65534 Always 1 Value (16 bit)

Access: Base ID, broadcast ID

Connected ModBus function: Write Multiple Registers (WMR)

Bytes 0+1 Byte 2 Byte 3 Bytes 4-7

Start reg. Nr. of regs to write Marker Data bytes

0–65534 2–123 0xFF, 0xFE... Four bytes or two 16 bit values or one 32 bit value

Start register: always the register number from the register list, i. e. start register, even for WMR.

Nr. of regs to write: refer to the register list. An object defined with 40 bytes occupies 20 registers, so when writing to such 
an object the value here would have to be 20.

Marker: is used to distinguish single messages from split messages and to detect the correct sequence of data. For
example, a string like the user text can be up to 40 characters long and when writing it has to be split across multiple
messages. Every message can transport 4 characters of the string. The marker always starts with 0xFF and is counted
down (0xFF, 0xFE...) with every next split message belonging to a transmission. The marker is required, because on CAN
bus it’s not guaranteed that messages are received in the same order they were sent.

Data bytes: the number of bytes in this type of message is always 4, no matter if all bytes are filled with information from 
the actual data to transmit or are 0. An example: an user text with a length of 15 characters would require to send at least
4 messages. The object for the user text is defined to have 20 registers, means 10 messages. Since you would write to 
less registers than defined you would only have to reduce the number of Nr. of regs to write. In this example it would be 8, 
resulting in 4 messages containing 16 bytes (15 bytes of string + termination character).

8.3.2 Cyclic sending (writing)

Cyclic sending (or writing) is intended for compact and time efficient transmission of often used set values and status 
in form of a block of data. It uses separate CAN IDs. The user defines the interval of cyclic send via timing in the CAN 
software, though we recommend to stick to timing recommendations as described in section 3.5.3.

Page 93mPower DC Programming Guide (Rev A)

It’s strongly recommended to send the block Control after the other data blocks, especially when
remote control has not yet been activated. This means you should write the set values first, and as 
the last step write the status to Base ID Send. This will submit all data internally and since block
Control would contain remote control = on, the set values in the other blocks would be accepted
without error.

In order to use this feature, the user only has to define the separately adjustable Base ID Cyclic Send and can then send
two different messages with following format:

Access: Base ID Cyclic Send (Control)

Bytes 0-1

Control word

Control word definition:

Bit Name Related
register Meaning

0 Remote control 402 Activates remote control of the system with 1 or deactivates it with 0
1 Input/Output 405 Switches the DC output of the system on with 1 or off with 0
2 UIP / UIR 409 Activates resistance control mode (UIR, where featured) with 1, while with 0

mode UIP will be active
3 (not applicable) 422 —
4 Alarm 411 The value 1 acknowledges all currently acknowledgeable alarms

This control word requires special attention, as the 5 bits can trigger several actions at once which
don't have a certain priority of processing. This means that if you would try to activate remote control
together with switching on the DC output (bits 0 and 1 both TRUE), you may receive a settings con-
flict error, because the system would possibly process bit 1 before bit 0.

Access: Base ID Cyclic Send + 1 (Set values 1)

Bytes 0-1 Bytes 2-3 Bytes 4-5 Bytes 6-7

Register 500 Register 501 Register 502 Register 503

Set value of voltage Set value of current Set value of power Set value of resistance

Page 94mPower DC Programming Guide (Rev A)

8.3.3 Querying

Querying an object is the first part of a read action. It’s always done via Base ID + 1. The system should then respond 
via Base ID + 2 (Read_Object) and with the expected data. Only after reading the response, the read action is finished. 
In order to query an object via the Query ID (Base ID +1) it’s sufficient to send the start register number. The system will 
respond with the correct length of data, but in different. See below at 8.3.4.

Access: Base ID + 1

Connected ModBus functions: Read Coils (RC), Read Holding Registers (RHR)

Bytes 0+1

Start reg.

0–65534

8.3.4 Normal reading

Data coming from the system can be a single message (expected data or error) or can be split messages forming a
response. The information is either in a buffer or, when using Vector software, automatically sorted into signals. The
data of split messages has to be combined again according to the marker. Even the Vector database cannot do this
automatically. But there are only a few objects like the user text which require this treatment and these are usually not
accessed very often.

Access: Base ID + 2

Response with one message (number of queried registers 1-3):

Bytes 0+1 Bytes 2-7

Register Data

0–65534 1-3 registers

Response with multiple messages (number of queried registers >3):

Bytes 0+1 Byte 2 Bytes 3-7

Register Marker Data

0–65534 0xFF, 0xFE... 5 bytes

Response as error message:

Bytes 0+1 Byte 2

65535 Error code

The error codes used here are the same as with ModBus. See “4.6.8. Communication errors”.

Page 95mPower DC Programming Guide (Rev A)

8.3.5 Cyclic reading

The cyclic read feature is an extended function where the system can automatically send specific objects to specific IDs 
and in a specific interval. Cyclic read messages differ from those of normal read actions.

In order to activate and use cyclic read, the user has to

1. Set the extra Base ID Cyclic Read on the system (HMI, CAN settings).

2. Define which of the 5 available objects for cyclic read are going to be used and activate them by setting the 
interval time to a value other than zero.

3. Process the received data separately and differently, because the data format is different here (see below).

The interval times for the cyclic objects can be set separately and arbitrarily. In case they match or overlap, the system will
send the corresponding messages subsequently and as fast as possible.

The minimum interval is 20 ms. When using a very low CAN bus speed, for example 10-50 kbps, CAN
bus errors may occur when multiple cyclic read items are active, because of too much traffic.

Once cyclic read is activated by setting the interval time of at least one item and as soon as a CAN connection is
established, the system will start to automatically and permanently send messages to the defined IDs. The cyclic read 
feature can be turned off or on anytime using the CAN settings on the control panel or the corresponding commands sent
as acyclic CAN message.

There are up to 6 CAN IDs reserved for cyclic read. Starting at the adjustable Base ID Cyclic Read (see control panel of the
system) the data in the messages is defined as follows:

Access: Base ID Cyclic Read (Status)

Bytes 0-3

System status (32 Bit)

Page 96mPower DC Programming Guide (Rev A)

Bit layout of the system status value:

Bit Name Meaning Bit Name Meaning

31 Remote control 1 = on 15 -
30 Input / output 1 = on (req., register 405) 14 Alarm OVD 1 = alarm active
29 Volt. reg. speed 1 = fast (register 422) 13 Alarm OVP 1 = alarm active
28 Operation mode 0 = UIR, 1 = UIP 12 Alarm PF 1 = alarm active
27 Alarms 1 = at least 1 alarm active 11
26 Alarm MSS 1 = alarm active 10
25 Alarm OCD 1 = alarm active 9 REM-SB 1 = on (register 505, bit 30)
24 Alarm OCP 1 = alarm active 8 Alarm UCD 1 = alarm active
23 Interface

in access
register 505, bits 4-0 7 Alarm UVD 1 = alarm active

22 6 Remote sensing 1 = external, 0 = internal

21 5 Function gen. 1 = FG active
20 4 MS type 1 = master, 0 = slave
19 3 Input / output 1 = on (register 505, bit 7)
18 Alarm OPD 1 = alarm active 2 Reg. mode register 505, bits 10-9
17 Alarm OPP 1 = alarm active 1
16 Alarm OT 1 = alarm active 0 PSB mode 0 = source, 1 = sink

Access: Base ID Cyclic Read + 1 ("Actual values")

Bytes 0-1 Bytes 2-3 Bytes 4-5

Register 507 Register 508 Register 509

Actual voltage Actual current Actual power

Access: Base ID Cyclic Read + 2 ("Set values 1")

Bytes 0-1 Bytes 2-3 Bytes 4-5 Bytes 6-7

Register 500 Register 501 Register 502 Register 503

Set value of voltage Set value of current Set value of power Set value of resistance

Access: Base ID Cyclic Read + 3 ("Limits 1" or "Limits 1 [PS]")

Bytes 0-1 Bytes 2-3 Bytes 4-5 Bytes 6-7

Register 9002 Register 9003 Register 9000 Register 9001

I-max I-min U-max U-min

Page 97mPower DC Programming Guide (Rev A)

Access: Base ID Cyclic Read + 4 ("Limits 2" or "Limits 2 [PS]")

Bytes 0-1 Bytes 2-3

Register 9004 Register 9006

P-max R-max

Access: Base ID Cyclic Read + 5 ("Set values [EL]") (PSB 9000 and PSB 10000 series only)

Bytes 0-1 Bytes 2-3 Bytes 4-5

Register 499 Register 498 Register 504

Set value of current (EL) Set value of power (EL) Set value of resistance (EL)

Access: Base ID Cyclic Read + 6 ("Limits [EL]") (PSB 9000 and PSB 10000 series only)

Bytes 0-1 Bytes 2-3 Bytes 4-5 Bytes 6-7

Register 9008 Register 9009 Register 9005 Register 9007

I-max I-min P-max R-max

8.3.6 Message examples

8.3.6.1 Switching to remote control

As described in “4.6.9.5. Switch between remote and manual control”, it’s required to switch the system to remote control
before you can control it. In order to do this, you first need to find the proper command, i.e. register in the register list resp. 
the dedicated index in the EDS. In this case, it’s register 402 (hex: 0x192). The register list defines that the value 0xFF00 
has to be sent to switch to remote or value 0x0000 to leave remote control.

Assuming the system has been set to Base ID 0x20, the data to be sent according to 8.3.1 would be:

0x01 0x92 0x01 0xFF 0x00
Register /

object
Nr. of
regs

Bit (coil)
for TRUE

The system should switch to remote control immediately after reception, if not inhibited somehow. The status of remote
control can be read from the display or by reading another object.

Page 98mPower DC Programming Guide (Rev A)

8.3.6.2 Write and read back a set value

After remote control has been accepted by the system, you are allowed to send set values. Those values usually represent
a percent value. From the definition in the register list, the hexadecimal value 0xCCCC translates to 100% and 0x0000 to 
0%. It means, there are 52428 possible values between 0% and 100%. It has to be pointed out here, that this is not the
resolution a system value like voltage or current can have at the DC input/output. The effective resolution of output/input 
values is 26214 steps. An example for set value translation is in “4.6.9.1. Writing a set value”.

Power supply model PSI 9080-170 3U has a nominal current of 170 A. If you wanted to set it to 35 A, the set value
according to the formula in 4.2.1 calculates as: 35 A * 52428 / 170 A = 10794 = 0x2A2A. The current is set with register 
501. Assuming the system would have been set to Base ID 0x88 the data to be sent to this ID, according to 8.3.1, would
be:

0x01 0xF5 0x01 0x2A 0x2A
Register /

object
Nr. of
regs

Bit (coil)
for TRUE

Soon after the system received and accepted the value, it’s set, and could be read from the display or also by reading it
back using the same object. With the same base ID, the query message would be

0x01 0xF5
Register /

object

and would have to be sent to the query ID of the system, here 0x89. Shortly after this, the system should respond the
requested value on the read ID 0x8A:

0x01 0xF5 0x2A 0x2A
Register /

object
Set value
current

In case the values has not been accepted when sending it, for example because the adjustment limit for current (I-max)
has been set to 30 A, the system may have responded with an error message (see 8.3.4) instead of the expected one:

0xFF 0xFF 0x03
Error Error

Code

The ModBus error code 0x3 indicates wrong data. In this case, the set value was too high.

Page 99mPower DC Programming Guide (Rev A)

9 EtherCAT

9.1 Preamble
This section is specific to the communication with a system via the Anybus module IF-AB-ECT—and therefore is specific to 
the 310 Series systems.

The EtherCAT data communication is based on CANopen. All documentation for EtherCAT and CANopen is provided by the
Beckhoff company and the CAN in Automation (CiA) organization. In the documentation below, certain software examples
refer to Beckhoff’s TwinCAT.

9.2 Integrating your system in TwinCAT
To use EtherCAT, you will need an ESI file (an EtherCAT system description in XML format) from our website. The file is to 
be put into a dedicated folder in the TwinCAT installation. Default path on Windows system:

c:\TwinCAT\<twincat_version>\Config\Io\EtherCAT\

After installing that file and restarting the TwinCAT IDE, mPower EtherCAT slaves can be integrated into the setup with the 
Insert EtherCAT System dialog and by selecting the system name IF-AB-ECT.

9.3 Data objects
The systems internally use ModBus protocol and for CANopen over Ethernet communication. This is why the reference
for all cyclic data (PDOs) and acyclic data (SDOs) is the ModBus register lists (“4.5. Reading Register Lists”). The acyclic
objects are downloaded from the system when accessing an online EtherCAT slave in tab "CoE" in TwinCAT. Offline objects 
in form of an EDS file are not available.

Together with the PDOs defined in the ESI file the complete list of indexes then becomes accessible and enable the user 
to completely control the system.

There is a connection between the CoE indexes and the ModBus register numbers in the lists. You can translate both back
and forth.

Page 100mPower DC Programming Guide (Rev A)

Translating ModBus register to CANopen index

ModBus register number in decimal + 8193 => convert to hexadecimal = index

Example: you want to set the system into remote control mode and want to find the corresponding CoE index. In 
the register list you have register number 402 for this task. The calculation is: 402 + 8193 = 8595 => converted to
hexadecimal is 0x2193, and thus the index is 2193.

Translating CANopen index to ModBus register

CANopen index in hexadecimal – 0x2001 => convert to decimal = register

Example: you need know the meaning of the bits in the “Status” PDO. Find the corresponding CoE index in the index list.
In this case, it’s 21FA. The calculation is: 0x21FA – 0x2001 = 0x1F9 => converted to decimal is 505. In the register list
you will find register number 505 and the layout of the 32 bit value.

9.3.1 PDO object

The system description file defines for mPower EtherCAT slaves the same set of object in the one PDO:

Name EtherCAT
data type

Length in
bytes

ModBus
register Short description

Status UDINT 4 505 System status
Voltage Monitor UINT 2 507 Actual voltage on DC output (in percent)
Current Monitor UINT 2 508 Actual current on DC output (in percent)
Voltage select UINT 2 500 Set value of voltage (in percent)
Current select UINT 2 501 Set value of current (in percent)
Power select UINT 2 502 Set value of power (in percent)
Resistance select UINT 2 503 Set value of resistance (in percent)

9.3.2 SDOs

The acyclic data objects for use in the EtherCAT system are defined in your system and can be downloaded from it. It
requires the system to be online with the EtherCAT system. There is no separate documentation for the downloadable
data objects. Like with CANopen (see “7. CANopen”), the register lists which are part of the programming documentation
are the reference for the SDOs to explain data content and function, as well the section of this document dealing with the
ModBus protocol and its examples.

9.3.3 Use of the data objects

Please refer to “7.2. User objects (indexes)”.

Page 101mPower DC Programming Guide (Rev A)

Appendix A: System Classes

A.1 Class Assignments
For distinction of different system series and especially of variants within one series a system class number is assigned to
every system. It can be read from the system (ModBus register 0, or SCPI command SYSTEM:DEVice:CLASS?) and used
to distinguish products when scanning a network for mPower units.

Class Assigned to series

28 mPower 300 Series 2U/3U models
30 mPower 300 Series 1U models
33 mPower 310 Series 2U/3U models
45 mPower 320 Series

Page 102mPower DC Programming Guide (Rev A)

Appendix B: 320 Series Front USB

The main purpose of the front USB port is quick access to the most important DC output related parameters, such as set
values and protections. Reading values and status is always possible, while setting them is only possible when the unit is
not in control by a master device.

The number of available commands is restricted on the front USB port relataive to the rear port, but it supports both
ModBus RTU and SCPI protocols.

B.1 ModBus Commands
The available ModBus RTU commands are identified in a Register List specific to the 320 Series Front USB. This list is 
seprate from the main 310/320 Series Relsiter list document. The file is available from our website.

B.2 SCPI Commands
In the programming guide there is a section for all SCPI commands, as available with the rear USB port. Here is
an overview what commands are available with the front port. Details about the commands can be found in the
“Programming SCPI & ModBus” document, also called programming guide.

*IDN? [SOURce:]VOLTage
*CLS [SOURce:]VOLTage?
*RST [SOURce:]VOLTage:LIMit:HIGH?
*ESE [SOURce:]VOLTage:LIMit:LOW?
*ESE? [SOURce:]VOLTage:PROTection[:LEVel]
*ESR [SOURce:]VOLTage:PROTection[:LEVel]?
*STB? MEASure:[SCALar:]CURRent[:DC]?
[SOURce:]CURRent MEASure:[SCALar:]POWer[:DC]?
[SOURce:]CURRent? MEASure:[SCALar:]VOLTage[:DC]?
[SOURce:]CURRent:LIMit:HIGH? OUTPut[:STATe]
[SOURce:]CURRent:LIMit:LOW? OUTPut[:STATe]?
[SOURce:]CURRent:PROTection[:LEVel] STATus:OPERation?
[SOURce:]CURRent:PROTection[:LEVel]? STATus:QUEStionable?
[SOURce:]IRRAdiation SYSTem:ALARm:ACTion:PFAil
[SOURce:]IRRAdiation? SYSTem:ALARm:ACTion:PFAil?
[SOURce:]POWer SYSTem:ALARm:COUNt:OCURrent?
[SOURce:]POWer? SYSTem:ALARm:COUNt:OPOWer?
[SOURce:]POWer:LIMit:HIGH? SYSTem:ALARm:COUNt:OTEMperature?
[SOURce:]POWer:LIMit:LOW? SYSTem:ALARm:COUNt:OVOLtage?
[SOURce:]POWer:PROTection[:LEVel] SYSTem:ALARm:COUNt:PFAil?
[SOURce:]POWer:PROTection[:LEVel]? SYSTem:COMMunicate:TIMEOUT?
[SOURce:]RESistance SYSTem:CONFig:MODE

Page 103mPower DC Programming Guide (Rev A)

[SOURce:]RESistance? SYSTem:CONFig:MODE?
[SOURce:]RESistance:LIMit:HIGH? SYSTem:CONFig:OCD
SYSTem:CONFig:OCD? SYSTem:CONFig:USER:TEXT?
SYSTem:CONFig:OCD:ACTion SYSTem:CONFig:UVD
SYSTem:CONFig:OCD:ACTion? SYSTem:CONFig:UVD?
SYSTem:CONFig:OPD SYSTem:CONFig:UVD:ACTion
SYSTem:CONFig:OPD? SYSTem:CONFig:UVD:ACTion?
SYSTem:CONFig:OPD:ACTion SYSTem:DEVice:CLAss?
SYSTem:CONFig:OPD:ACTion? SYSTem:ERRor:ALL?
SYSTem:CONFig:OUTPut:RESTore SYSTem:ERRor:NEXT?
SYSTem:CONFig:OUTPut:RESTore? SYSTem:ERRor?
SYSTem:CONFig:OVD SYSTem:LOCK
SYSTem:CONFig:OVD? SYSTem:LOCK?
SYSTem:CONFig:OVD:ACTion SYSTem:LOCK:OWNer?
SYSTem:CONFig:OVD:ACTion? SYSTem:NOMinal:CURRent?
SYSTem:CONFig:UCD SYSTem:NOMinal:POWer?
SYSTem:CONFig:UCD? SYSTem:NOMinal:RESistance:MAXimum?
SYSTem:CONFig:UCD:ACTion SYSTem:NOMinal:RESistance:MINimum?
SYSTem:CONFig:UCD:ACTion? SYSTem:NOMinal:VOLTage?

mPower™ DC 3xx Series
Programmable Power Supplies
Programming Guide P/N: 501048-DC3PS-A
© 2020, Marway Power Systems, Inc. All rights reserved.

Marway Power Solutions
1721 S. Grand Ave., Santa Ana, CA 92705
800-462-7929 • marway@marway.com

	1 General
	1.1 Documentation Symbols
	1.2 Applicability

	2 Hardware Interfaces
	2.1 USB Ports
	2.1.1 Rear USB
	2.1.2 Front USB

	2.2 Ethernet
	2.2.1 Access via HTTP
	2.2.2 Access via TCP

	2.3 GPIB
	2.4 AnyBus Modules
	2.5 AnyBus Startup Time
	2.6 AnyBus Installation
	2.7 AnyBus Connection Topology

	3 Programming Introduction
	3.1 Remote Communication Sources
	3.2 Remote Communication Protocols
	3.2.1 Protocol Detection

	3.3 Remote Communication Interfaces
	3.4 Control Location
	3.5 Command Message Timing
	3.5.1 Reading response time
	3.5.2 Writing response time
	3.5.3 Time between messages

	3.6 Connection Timeout
	3.7 Fragmented Messages
	3.8 Resolution and Tolerances
	3.9 Function Generator Slope
	3.9.1 Externally Programmed Slope

	4 ModBus
	4.1 ModBus Overview
	4.1.1 ModBus RTU
	4.1.2 ModBus TCP
	4.1.3 ModBus for other Interfaces

	4.2 Set Value Resolution
	4.2.1 Hex Percent and Decimal Value Conversion

	4.3 Communication with AnyBus Modules
	4.4 Communication with USB Port
	4.4.1 USB driver installation
	4.4.2 Discovering COM Port in Windows
	4.4.3 Getting Started

	4.5 Reading Register Lists
	4.5.1 Function Columns
	4.5.2 Data type Column
	4.5.3 Access Column
	4.5.4 Number of registers Column
	4.5.5 Data Column
	4.5.6 Profibus/Profinet slot & index Columns
	4.5.7 EtherCAT SDO/PDO? Column

	4.6 ModBus RTU in Detail
	4.6.1 Message types
	4.6.2 Slave Address
	4.6.3 Functions
	4.6.4 Control messages (write)
	4.6.5 Query message
	4.6.6 Response messages
	4.6.7 The ModBus checksum
	4.6.8 Communication errors
	4.6.9 Examples of ModBus RTU messages

	4.7 ModBus TCP in detail
	4.7.1 Example for a ModBus TCP message

	4.8 Specific Register Notes
	4.8.1 Register 171
	4.8.2 Register 411
	4.8.3 Registers 500-503 (set values)
	4.8.4 Register 505 (system status)
	4.8.5 Registers 650 - 662 (master-slave configuration)
	4.8.6 Registers 850 - 6695 (function generator)
	4.8.7 Registers 9000 - 9009 (adjustment limits)
	4.8.8 Registers 10007 - 10900
	4.8.9 Register from 12000 (advanced photovoltaics simulation, DIN EN 50530)

	4.9 Remote Programming of Function Generator

	5 SCPI protocol
	5.1 Syntax
	5.1.1 Concatenated commands
	5.1.2 Upper and lower case
	5.1.3 Long form and short form
	5.1.4 Termination character
	5.1.5 Errors

	5.2 Value Format
	5.3 Getting Started
	5.3.1 Ping
	5.3.2 Switch between remote and manual control

	5.4 Standard IEEE commands
	5.5 Status registers
	5.6 Status commands
	5.7 Set value commands
	5.8 Measure commands
	5.9 Protective feature commands
	5.10 Supervision feature commands
	5.11 Adjustment limit commands
	5.12 Master-slave operation commands
	5.13 General query commands
	5.14 System configuration commands
	5.14.1 General configuration commands
	5.14.2 Anybus configuration commands
	5.14.3 Ethernet configuration commands

	5.15 Function generator commands
	5.15.1 XY type: Mode selection
	5.15.2 XY type: Load table data
	5.15.3 XY type: Control
	5.15.4 Arbitrary type: Mode and configuration
	5.15.5 Arbitrary type: Load sequence data
	5.15.6 Arbitrary type: Control
	5.15.7 Special function: Simple PV (photovoltaics)
	5.15.8 Special function: FC (fuel cell)

	5.16 Extended PV simulation commands
	5.16.1 General configuration
	5.16.2 Day trend mode configuration
	5.16.3 Data recording
	5.16.4 Status commands
	5.16.5 Parameter commands
	5.16.6 Control commands
	5.16.7 Error situations

	5.17 Alarm management commands
	5.17.1 Reading system alarms
	5.17.2 Acknowledging system alarms
	5.17.3 Alarm counters
	5.17.4 Example

	5.18 Example applications
	5.18.1 Configure and control master-slave with SCPI
	5.18.2 Programming examples for PV simulation (DIN EN 50530)

	6 Profibus & Profinet
	6.1 General
	6.2 Preparation
	6.3 Slot configuration for Profibus
	6.4 Slot configuration for Profinet
	6.5 Cyclic communication via Profibus/Profinet
	6.6 Acyclic communication via Profibus/Profinet
	6.7 Examples for acyclic access
	6.7.1 Activate/deactivate remote control
	6.7.2 Send a set value
	6.7.3 Read something

	6.8 Data interpretation

	7 CANopen
	7.1 Preparation
	7.2 User objects (indexes)
	7.2.1 Translation ADI > Register

	7.3 Specific examples
	7.4 CANopen to ModBus differences
	7.4.1 When using the arbitrary generator

	7.5 Error codes

	8 CAN
	8.1 Preparation
	8.2 Introduction
	8.3 Message formats
	8.3.1 Normal sending (writing)
	8.3.2 Cyclic sending (writing)
	8.3.3 Querying
	8.3.4 Normal reading
	8.3.5 Cyclic reading
	8.3.6 Message examples

	9 EtherCAT
	9.1 Preamble
	9.2 Integrating your system in TwinCAT
	9.3 Data objects
	9.3.1 PDO object
	9.3.2 SDOs
	9.3.3 Use of the data objects

	Appendix A: System Classes
	A.1 Class Assignments

	Appendix B: 320 Series Front USB
	B.1 ModBus Commands
	B.2 SCPI Commands

